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PREFACE 
 
This volume documents that research on mathematics textbooks has successfully established as a 
proper research area within mathematics education. A first significant event in this area has been 
the in the International Conference on School Mathematics Textbooks (ICSMT), held in 
Shanghai in 2011. Of particular importance and international impact was the special issue 
published by ZDM Mathematics Education with the theme of “textbook research on 
mathematics education” (Fan, Jones et al. 2013). Thanks to the progress of research in this 
area, the first International Conference on Mathematics Textbook Research and Development 
(ICMT-2014) took place at the University of Southampton (UK), from 29 to 31 July 2014. About 
180 participants, from 30 different countries, attended ICMT-2014 – now to be called ICMT-1, 
since it was decided there to organise a sequel conference, the II International Conference on 
Mathematics Textbook Research and Development / II Conferência Internacional em Pesquisa e 
Desenvolvimento de Livros Didáticos de Matemática (ICMT-2).  
It was held from 7 to 11 May 2017, at the Federal University of Rio de Janeiro (UFRJ) and at the 
Federal University of the State of Rio de Janeiro (UNIRIO), Brazil. 
The Conference was organised by a truly international IPC – International Programme 
Committee: 
 

• Rúbia	Amaral	(UNESP,	Brazil)	–	Secretary	
• Ubiratan	d’Ambrosio	(UNIAN,	Brazil)	–	Honorary	President	
• Marcelo	Borba	(UNESP,	Brazil)	
• Rute	Borba	(Universidade	Federal	de	Pernambuco,	Brazil)	
• Marcos	Cherinda	(Universidade	Pedagógica	de	Moçambique)	
• Lianghuo	Fan	(University	of	Southampton,	UK)	–	Co-chair	
• Victor	Giraldo	(Universidade	Federal	do	Rio	de	Janeiro,	Brazil)	–	Local	Chair	
• Patricio	Herbst	(University	of	Michigan,	USA)	
• Marja	van	den	Heuvel-Panhuizen	(Universiteit	Utrecht,	Netherlands)	
• Abdellah	El	Idrissi	(École	Normale	Supérieure	de	Marrakech,	Morocco)	
• Diana	Jaramillo	Quiceno	(Universidad	de	Antioquia,	Colombia)	
• Cyril	Julie	(University	of	the	Western	Cape,	South	Africa)	
• Gabriele	Kaiser	(Universität	Hamburg,	Germany)	
• Alexander	Karp	 (Teachers	College,	Columbia	University,	USA)	
• Jeremy	Kilpatrick	(University	of	Georgia,	USA)	
• Jian	Liu	(Beijing	Normal	University,	China)	
• Eizo	Nagasaki	(National	Institute	for	Educational	Policy	Research,	Japan)	
• Michael	Otte	(UNIAN,	Brazil)	
• Johan	Prytz	(Uppsala	Universitet,	Sweden)	
• Sebastian	Rezat	(Universität	Paderborn,	Germany)	
• Angel	Ruiz	(Universidad	de	Costa	Rica,	Costa	Rica)	
• Kenneth	Ruthven	(University	of	Cambridge,	UK)	
• Gert	Schubring	(UFRJ,	Brazil/Universität	Bielefeld,	Germany)	–	Chair	

	
and the Local Organisation Committee: 
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• Lourdes	Werle	de	Almeida	(UEL)	
• Rúbia	Amaral	(UNESP)	–	Co-chair	
• Franck	Bellemain	(UFPE)	
• Marilena	Bittar	(UFMS)	
• Victor	Giraldo	(UFRJ)	–	Chair	
• Verônica	Gitirana	(UFPE)	
• Carmen	Mathias	(UFSM)	

• João	Frederico	Meyer	(UNICAMP)	
• Cydara	Ripoll	(UFRGS)	
• Walcy	Santos	(UFRJ)	
• Fábio	Simas	(UNIRIO)	
• Ralph	Teixeira	(UFF)	

	

	
	

 
with the support of the Brazilian funding agencies CNPq and CAPES and of the Brazilian 
Mathematics Education Society (SBEM), the Brazilian Society of Mathematics (SBM), and the 
Brazilian Society of Applied and Computational Mathematics (SBMAC). 
 
The Conference had been attended by more than 200 participants – from all the five continents. The 
ICMT-2 comprised 5 plenary lectures, organised three thematic symposia with 20 contributions and 
eight workshops, among them six especially for Brazilian teachers. The oral communications were 
organised in nine thematic sections, with together 66 communications, and a poster session with 17 
contributions.  
In the preparation of ICMT-2, special emphasis has been given to two dimensions for textbook 
analysis: it is linguistics, for analysing the text of textbooks, and in particular for the role of signs 
and, as the particularity of mathematical texts, for diagrams. Likewise, historicity is another 
peculiarity of mathematical texts and so there was emphasis on history of mathematics. Both 
dimensions had been represented by plenary talks and by thematic sections. 
 
The contributions submitted after the Conference for the Proceedings have been peer-reviewed. 
Alas, we regret the delay in publishing the Proceedings, but one has to the unexpected burdens in 
editing imposed by the great number of submitters who did not care to apply the template. 
 
At present, already the III International Conference on Mathematics Textbook Research and 
Development is being prepared, for September 2019 in Paderborn (Germany), revealing that the 
initiative of 2014 turned into a series of conferences showing the productive character of the 
research area. 
 
in the November of 2018 
Gert Schubring 
Lianghuo Fan 
Victor Giraldo 
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TEXTBOOKS FOR MILLIONS: THE BRAZILIAN 
MATHEMATICS TEXTBOOK ASSESSMENT PROGRAM 
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Abstract 
We review, very briefly, the history of government textbook policies in Brazil as a background to our 
discussion of the Brazilian national mathematics textbook assessments for PNLD, Programa 
Nacional do Livro Didático (National textbook program). It started for the 1997 school year and 
evolved gradually to assess textbooks for public elementary, middle and high schools. We discuss the 
program´s main features, its positive aspects, the problems it faces, its relationship with publishers 
and indicate what remains to be done. 
 
Introduction 
Let´s start with some numbers. For the 2016 school year (February 2016-November 2016, the 
Ministry of Education´s Programa Nacional do Livro Didático (PNLD - National Textbook 
Program) bought and distributed textbooks for (almost) all public school students from Grade 1 (6 
years old children) to Grade 5 (11 years old students). This cost roughly US$ 418,500,000.00 and 
approximately 128,600,000 textbooks were distributed. For the following school year, 2017, the 
Government bought textbooks for students from Grade 6 through Grade 9. In addition, for the 2018 
school year it bought and distributed textbooks for high school students (1st through 3rd years). 
TABLE 1 shows the global numbers of acquired books, serviced schools, recipient students and the 
total costs from the 2014 through 2017 school years. . 
 

Table 1 
PNLD Books Schools Students Investments1 

(US$) 
2014 157,134,808 121,279 39,403,259 406,000,000.00 

2015 144,291,373 123,947 30,601,3441 454,200,000.00 

2016 128,588,730 121,574 34,513,075 418,500,000.00 

2017 152,351,763 117,053 29,416,511 370,260,220.00 

FNDE- Estatísticas do PNLD (organized by the author) 
If we now look only at mathematics textbooks, the number of books bought for the 2015 school 
year (PNLD-2015) was 7,555,759 distributed by six approved collections (which we call A, B, C, 
D, E and F), out of 15 submitted for assessment (Figure 1). 

                                                                            
1 Very approximate values.  
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Figure 1 – Number of mathematics textbooks bought for 2015 (FNDE – Estatísticas do PNLD, organized by 

the author) 
A very important part of PNLD is the mandatory assessment of all books presented by publishers 
for possible acquisition by the Government. Here, we will not discuss the logistic and 
administrative aspects of PNLD, only this assessment, which started with PNLD-1997. In addition, 
we will deal mainly with mathematics textbooks.  
It might seem a dreary subject to study a textbook assessment program. Notwithstanding, we claim 
it is important, since this successful program has definitely influenced, for the better, the quality of 
Brazilian mathematics textbooks and made research on them a respectable academic pursuit. Also, 
because of the amounts of government acquisitions for PNLD as a whole, the relationship between 
publishers and Brazilian governments changed greatly since 1997. 
Ensino Básico, the formal mandatory school education in Brazil for children and youngsters from 
six to seventeen years old, is presently divided into Ensino Fundamental that lasts nine years – 1st 
through 9th grade – and Ensino Médio, which lasts three years. Ensino Fundamental corresponds to 
the elementary (first five grades) – EF1 – and middle (last four grades) – EF2 – schools of many 
countries, and Ensino Médio corresponds to high school (secondary school). School years run from 
February through November, with a middle-year break in part of July.  
Brazil is divided in 26 Estados (states) and a Distrito Federal (Federal District). Each state is 
divided in municípios (counties). Sates are responsible for Ensino Médio, and counties for Ensino 
Fundamental. 
A word of explanation: the numbering of PNLD – for example PNLD 1997, PNLD, 2011, PNLD 
2017 – refers always to the school year in which the books will be used. Of course, these books are 
assessed previously. This should always be kept in mind, to avoid confusion and 
misunderstandings. 
The official site of FNDE – Fundo Nacional de Desenvolvimento da Educação, at 
www.fnde.gov.br, which makes available information about Brazil’s textbook policies and 
programs is an essential information source for anyone interested in PNLD in the last twenty years, 
including its assessments. Another valuable information source is Memorial do PNLD 
(http:www.cchla.ufrn.br/pnld/) at the Universidade Federal do Rio Grande do Norte, which is 
collecting and preserving the assessments’ memory. 
The success of the mathematics assessments during the time span covered (PNLD 1997 through 
PNLD 2018) was in great part due, I believe, to a competent and dedicated group of persons from 
several institutions that have, in the last 20 years, continuously or not, given their time, knowledge 
and know-how to assure fair and reliable assessments of mathematics textbooks. Among them, I 
would like to mention Adriano Pedrosa de Almeida, Marilena Bittar, Bruno Alves Dassie, Iole 
Druck, Verônica Gitirana, Paulo Figueiredo Lima, Mônica Mandarino, Elisabeth Belfort Moren and 
Elvira Nadai. It has been a privilege to share, each year, many weeks of productive work not only 
with them but with more than 250 persons, from all over the country, that have taken part in the 
assessments. 
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This paper studies the mathematics textbooks assessments for PNLD 1997 through PNLD 2018. 
Starting with PNLD 2019, many important changes that worry educators have been instituted.  
The author of this paper was actively involved with the mathematics textbooks assessments since 
1993, when he coordinated a pilot assessment, which will be mentioned later, until 2017. During all 
these years, he kept extensive documentation that he has constantly used while writing this paper, 
which studies the assessments for PNLD from 1997 through PNLD 2018. Some of the statements 
made in this paper, like “in these two assessments, the improvement of textbook quality due to the 
assessment pressure is obvious” (p. 8), are based on his careful reading and comparison of the 
relevant assessment reports and checklists. They give valuable information on how authors and 
publishers react, along the years, to the assessments.  
The author wishes to thank the editors and the referees, whose suggestions improved this paper. 
A short history of textbook policies in Brazil 
Before 1808, the Portuguese Crown forbade the printing of books in Brazil, and exerted strict 
censorship to avoid the introduction in Brazil of liberal, impious or subversive ideas (Soares 2013, 
p. 40). Starting in 1808, when the Portuguese Crown moved to Brazil, after Napoleon´s invasion of 
the Iberian Peninsula, we see mathematics books translated and printed by the Impressão Régia, the 
State official publishing house, for the professional courses just created in Brazil. We do not know 
much about the elementary mathematics textbooks used during the first half of the 19th century, 
partly because of the badly organized system of “aulas régias”, created in the 18th century to take 
the place of Jesuit schools. 
After independence from Portugal, in 1822, more precisely after 1830, Brazilians started writing 
elementary mathematics textbooks, instead of using translations, mainly from the French language. 
The first elementary mathematics textbook written by a Brazilian and published in Brazil was the 
Compêndio de Aritmética, by Cândido Baptista de Oliveira, in 1832. Of course, all books had to be 
approved by the ruling authorities before being printed and sold. 
In 1837, we witness the establishment of Colégio Pedro II, in Rio de Janeiro, with the first regular 
and sequential secondary education courses in the country and that was instituted as the model 
establishment for high schools. If a provincial high school followed Pedro II´s curricula and 
adopted its textbooks, it was officially accredited and its students had, up to the 1870ties, the right 
to enter post secondary schools (law, medicine and engineering) without passing an entrance 
examination.  
It seems that the first regulation dealing specifically with textbook censorship was instituted in 
1849, in the City of Rio de Janeiro, the seat of the Crown, the Município da Côrte .2 Among other 
things, it stipulated that textbooks used in schools had to be approved by the provincial governor 
(Soares 2013 p. 42). Other provinces followed suit. In 1854, an educational reform created, in Rio 
de Janeiro, the general inspectorship of primary and secondary education, which was in charge, 
among many other duties, to “review, correct, order to be corrected or substitute, when needed, the 
textbooks used in public schools” (Soares 2013, p. 43). The approved legislation also encouraged 
teachers and “learned persons” to write textbooks, with money rewards to the authors of selected 
works. The prize was awarded automatically if a textbook was adopted by Colégio Pedro II. In 
poorly paid occupations, this was indeed a powerful inducement for the production of mathematics 
textbooks not only by mathematics teachers but also by engineers and the military. In the Município 
da Corte, the government also took upon itself the task of distributing the approved textbooks, with 
no cost to the students. Information about this for the empire provinces is scant and unreliable.  
We will not dwell upon changes in textbook policies for the remaining years of the empire and for 
the early republic. The general inspectorship remained responsible for supervising textbooks. An 
ever present unifying factor in textbook production were the curricula of Colégio Pedro II.  
                                                                            
 2  Brazil, differently from all other South American countries, did not become a republic after its 
independence from Portugal in 1822: It became an empire which lasted till 1889, when the republic was 
instituted. 
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In 1930 a revolution brought Getúlio Vargas into power, who undertook a sweeping centralizing 
reform of Brazil. His first education minister, Francisco Campos, reorganized secondary and higher 
education in 1931. In 1937, a new minister of education, Gustavo Capanema, created the Instituto 
Nacional do Livro (INL, National Book Institute) with the task of publishing important books, a 
national encyclopaedia and a national dictionary. Besides, it should promote the establishment of a 
national network of public libraries. In the following year, 1938, the Comissão Nacional do Livro 
Didático (CNLD, National Textbook Committee) was instituted, responsible for all legislation 
concerning the production and circulation of textbooks (Decreto-Lei n° 1.006/38). CNLD was the 
first national committee to control all textbook production in Brazil (Filgueiras 2008).  
The Comissão was initially composed by seven members, chosen by the President, and “renowned 
for their pedagogical expertise and unimpeachable moral principles” (Decreto-Lei n° 1.006/38, 9, 
§1). They could not have any commercial relationship with publishing houses and, at first, 
textbooks they wrote could not be presented for assessment. Teachers and school principals were 
free to choose any book approved by the committee. Rejected works could not be used in either 
private or public schools. 
The law (Decreto-Lei n° 1.006/38, 20) listed 11 politic and ideological criteria for assessing 
textbooks and only five didactical and pedagogical ones (Oliveira, Guimarães, Bomény 1984, p.35). 
The last stated that textbooks could not present scientific or technical errors, violate fundamental 
pedagogical ideas and must follow the didactical principles officially adopted. All elementary 
school textbooks had to be written in Portuguese. 3 
Among the  duties of the Comissão were (SOARES and ROCHA 2005, p 89): 

a) Assess the books presented and approve or disapprove them. 
b) Stimulate textbook production and provide advice about the importation and adaptation 

of foreign works. 
In 1945, the government issued a law consolidating the several legal statutes about textbook 
assessment, production and use passed from 1938 on. Among other stipulations, the law stated 
unequivocally that only teachers or school principals could choose textbooks for school use. 
Meanwhile, the commission continued to struggle with the task of assessing an ever increasing 
amount of books (Dassie 2012, p. 96). An official list of approved books was issued only in 1947.  
In 1966, during Brazil’s military dictatorship, the Ministry of Education (MEC) and the United 
States Agency for International Development (USAID) signed an agreement that instituted the 
Comissão do Livro Técnico e Livro Didático (COLTED), to finance and organize the production, 
publication and distribution of textbooks. This provided MEC with funds to distribute 51 million 
books in a three year period. Besides, many books were translated or written and distributed by the 
program. This agreement was very important, because it marks the beginning of large scale free 
book distribution by the government. 
Five years later, in 1971, MEC created a new program to substitute COLTED, Programa do 
LivroDidático para o Ensino Fundamental (PLIDEF – Elementary and middle school textbook 
program), run by Instituto Nacional do Livro (INL – National Book Institute).  
From then on, the task of buying and distributing textbooks, and sometimes other school materials, 
was in charge of a succession of federal agencies, like Fundação Nacional do Material Escolar 
(FENAME – National Foundation for School Materials) and Fundação de Assistência ao Estudante 
(FAE, Student Assistance Foundation). At last, in 1985, PNLD was instituted by law (Decreto Lei 
no.91542), with several important characteristics, among which we stress the following: Textbooks 
will be chosen by teachers and the federal government assumes the cost of distributing books for all 
students in the first two grades of the public school system and community owned schools. We call 

                                                                            
3 This stipulation was aimed at the networks of ethnic schools in Brazil, mainly the German ones. They were 
forced to follow the official curricula issued by MEC, and to use only textbooks written in the Portuguese 
language (Ferreira 2008). 
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attention that there was no assessment of the books teachers could choose. Publishers presented lists 
of the books they were willing to sell and these lists were consolidated into a catalogue from which 
teachers had to select their textbooks. This was an excellent occasion to empty the publishing 
houses’ storage rooms of unsold books. 
The details of Brazil’s textbook policies, programs and federal agencies from1938 through 1984 
can be found in (Filgueiras 2011). In the period 1985-1997 there were no national assessments and 
we witness a clear loss of textbooks quality, as shown by the results of the national assessments that 
started with PNLD 1997. 
Taking into account the many complaints of teachers and educators in general about the very poor 
quality of textbooks, MEC instituted, in 1993, a commission with two tasks: firstly, to establish 
criteria for the assessment of textbooks bought by PNLD.4 Secondly, to assess the 10 most bought 
textbooks for each school year, from grade 1 through 4. 
The report of this commission (MEC, FAE, PNLD 1994) was staggering. In mathematics for 
example, 54 books were examined, of which only seven (13%) passed the criteria established by the 
commission. In other areas, the situation was even worse. Summing up its findings, the 
mathematics group wrote (MEC, FAE, PNLD 1994, p. 61):  

“[T]he mathematics group was surprised by the poor quality of the texts, the repetition of the 
same mathematical errors in almost all books, the very poor illustrations, wrong language and 
disrespect of the child intelligence, due to ridiculous or senseless contextualization. (...) There is 
imprecise or obscure language, which makes its understanding by the student difficult (...)”  

The media had a field day and quoted extensively from the report, which was supposed to be 
distributed to all schools. Publishers, through their professional associations, protested forcefully. A 
high MEC official said that the report was very pessimistic, like all academic studies, and it was 
better to have a bad book than no book at all. He did not stop at words and halted distribution of the 
report. It seemed the case was closed, that things would go on as always.  
The History of the Assessment Program  
In 1994, MEC decided to institute an assessment as a mandatory part of PNLD. Of course, there 
were several reasons for doing so, besides genuine concern about the quality of the textbooks used 
by millions of children at school. At the time, Brazil negotiated substantial loans for educational 
programs with international agencies, like the World Bank. This institution stressed the importance 
of good textbooks to compensate for poorly trained teachers, mentioning that in many countries 
these books impose de facto curricula and are very cheap (Torres 2000, p. 135). The bank also 
recommended that textbook production to be left to privately owned publishing houses and that the 
government should publish guides (catalogues with comments) to help teachers to select their 
textbooks. Besides, international organizations began to insist on accountability and program 
evaluation. We also mention that such an assessment would generate very positive media coverage 
for MEC,5 because of widespread criticism of textbooks quality. 
The legal basis for the assessments is provided by the Brazilian Constitution (1988) and by the 
National Education Act (Lei de Diretrizes e Bases da Educação Nacional), of 1996. The first 
declares that public education of good quality has to be provided by the State; the second affirms 
that it is the State duty to provide assistance to students, with didactic materials, transportation, food 
and health services. Besides, MEC is, by law, in charge of supervising the country´s educational 
system, including the watching over its quality. The government successfully used these legal facts 

                                                                            
4 The mathematics commission had five members, indicated by scientific and educational associations: Anna 
Franchi, Iara Augusta da Silva, João Bosco Pitombeira de Carvalho (coordinator), Martha Maria de Souza 
Dantas and Tânia Maria Mendonça Campos. 
5 During the first years of the assessment program, MEC “fed” the press with the worst and most colorful 
errors found in the assessed textbooks. These “pearls”, as they were informally called, sometimes made first 
page headlines in some of the most widely read newspapers in Brazil. 
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when Associação Brasileira de Editores de Livros Escolares (ABRELIVROS, Brazilian association 
of textbook publishers), went to court in 1996 against the assessment, claiming that the government 
violated schoolteachers right to choose the textbooks they would be working with. 
We describe and comment, next, the assessments carried out for PNLD 1997 through PNLD 2000, 
which we might consider the consolidation period of the assessment program. Of course, we cannot 
cover all details and present only the mainlines of the program evolution. 
Consolidation of the program: the first assessments, PNLD 1997 – PNLD 2000 
Planning for PNLD 1997 at MEC started in 1994. It was carried out in 1995 and 1996, and the 
books were in classrooms of the first four grades, all over the country, in February 1997. For the 
first time since 1985, publishers could not choose what they were willing to sell to the government. 
Now, they could sell only books successfully assessed by the MEC. 
The assessment preparation involved, first, the choice, by MEC, of the coordinators for the 
assessment groups, one for each school discipline; many persons who had participated in the 1993 
pilot assessment were chosen as coordinators for the different school subjects. After this, each area 
coordinator, jointly with MEC’s officials directly responsible for the assessment, proposed a set of 
criteria, which were subsequently discussed with textbook authors and publishers, and researchers 
in the teaching of the different school subjects (MEC, FAE, CENPEC 1996, p. 165). This 
preparation also involved the planning of the whole assessment process, with the discussion and 
definition of the role of each participant. The result of all these preparations was consolidated in a 
public call for books, addressed to publishers. The assessment criteria for the mathematics 
assessment were based on the ones established in 1993, of course with improvements. 
One of the major concerns during the first assessment preparation was the choice of assessors. In 
the case of mathematics, care was taken to select assessors with varied backgrounds, coming from 
different regions of the country. The assessors had to agree to a confidentiality clause until the 
assessment results were published and to state they had had no dealing with textbook publishers or 
authors of books presented for assessment during the preceding three years. Obviously, they could 
not be authors of books being assessed. 
During the preparation for PNLD 1997 it was decided which documents the assessors had to write 
and how they would proceed to do so. These arrangements have been followed, with variations, 
until PNLD 2018: Each book is assessed by a team of two experts that, independently, fill out a 
detailed individual checklist which covers all items the assessors are supposed to consider. Next, in 
a meeting, each team works together and consolidates their individually filled checklists into a joint 
checklist and propose that the book be accepted or excluded. For all books, the pair of its assessors 
write a detailed report, called parecer, listing the reasons for approval or exclusion. In the case of 
accepted books, they also write a short report, called a resenha (summary) to be included in the 
catalogue called Guia do Livro Didático (textbook guide) sent to all schools, and from which 
teachers choose their textbooks.  
The difficulties of writing a resenha were discussed at length. How to make it an effective help to 
teachers? Is it a condensed form of the textbook report or an independent text? What to select in the 
report to be included in the resenha? How to transform the technical and academic language of a 
report into a text understood by and helpful to school teachers? 
In PNLD 1997, books could be excluded (EXC), not recommended (NR), recommended with 
restrictions (RR) or recommended (REC).Teachers could choose books from the three last 
categories. The compromise to allow teachers to choose not recommended books was made to give 
teachers time to adapt themselves to the new standards of quality, because the1993 pilot assessment 
had shown that most of the textbooks in use at that time would be excluded in any forthcoming 
assessment. Indeed, in PNLD 1997, the excluded and not recommended books represented a little 
more than 50% of the total! Also, only 27,5 % of the books were approved without any restriction, 
as shown by Table 2. 
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Table 2 
Results of the Mathematics Assessment for 

PNLD 1997 
 Number of 

books 
(%) 

Recommended (Rec) 25 27.5 
Recommended with 
Restrictions (RR) 

16 17.6 

Not Recommended (NR) 37 40.7 
Excluded (Exc) 13 14.3 

Totals 91 100 
 

(MEC/FNDE 2000, results organized by the author) 
Publishers exacted from MEC the promise that the list of the excluded books would not be 
published, and that a new assessment for the first four grades would happen for the following 
school year, 1998. 
In the assessment for PNLD 1998, the categories used were strongly recommended (RD) 
recommended, (REC), recommended with restrictions (RR), not recommended (NR) and excluded 
(EXC). The strongly recommended category (RD, recomendado com distinção) was created to 
induce teachers to choose exceptionally good books. This happened, but most teachers went back, 
in the following years, to more conventional and down to earth books. The results were the 
following. 

Table 3 
Results of the Mathematics Assessment for 

PNLD 1998 
 Number 

of 
books 

(%) 

Strongly Recommended 
(RD) 

6 6.7 

Recommended (REC) 26 28.9 
Recommended With 

Restrictions (RR) 
25 27.8 

Not Recommended (NR) 28 31.1 
Excluded (EXC) 5 5.6 

Totals 90 100 
MEC/FNDE 2000, results organized by the author 

To compare the results of this assessment with those of PNLD 1997, we group together the strongly 
recommended books and recommended books, as shown in FIGURE 2. 
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Figure 2 (MEC/FNDE 2000, results organized by the author) 

 First, we notice a strong decrease of excluded books, which is understandable, since many 
excluded books in PNLD 1997 were not re-submitted in PNLD 1998. The same is true for the not 
recommended books. In addition, some books were revised or updated, with a corresponding 
upgrade in their classification. In these two assessments, the improvement of textbook quality due 
to the assessment pressure is obvious. 6 
If we compare the choices made by teachers of all school subjects for PNLD 1997 and PNLD 1998, 
we have the percent results shown in TABLE 4. 
 

Table 4 
Teachers´ Choices In PNLD 1997 and PNLD 1998, 

for all School Subjects, in Percentual Values 
 1997 1998 

RD --- 21.88% 
REC 19.64% 14.64% 
RR 8.46% 22.15% 
NR 71.90% 41.33% 

Guia de Livros Didáticos, PNLD 2000. 
We see that, when we consider all school subjects, the “shift” towards the lower part of the 
categories’ spectrum is even stronger than in mathematics. Unfortunately, so far, this characteristic 
of the mathematics area has not been sufficiently studied to allow explanation. Carvalho and Lima 
(unpublished) suggested this was due to a more consensual view of school mathematics in Brazil, 
nurtured by the many congresses and meetings of mathematics education. The divergent points of 
view of the “new math” movement were long gone and there have not been “maths wars” recently 
in Brazil. 
Starting with PNLD 1998, the three categories, RD, REC, RR were identified by stars in the Guia 
de Livros Didáticos, with respectively, three, two and one star. Publishers objected vehemently to 
this and a protracted battle on the subject was eventually won by them; since PNLD 2005, there 
have been only two categories, approved or excluded. 
Then, we have the first assessment of books for grades 5 through 8, in PNLD 1999, with the results 
shown in TABLE 5.  
We see, once again, that the excluded books make up almost half of the total of the submissions. A 
noteworthy evolution of the assessment was the extinction of the category of not recommended 
books, which was really a contradiction in terms. 
 

                                                                            
6 These conclusions are based on the personal files of the author, who coordinated the 1997, 1998, 1999 and 
2000 assessments. 



 Textbooks for Millions 

 13 

Table 5 
PNLD 1999 – Assessment of Mathematics Textbooks 

for Grades 5 through 8 
 Books % 

RD 4 5,6 
REC 16 22,2 
RR 18 25,0 

EXC 34 47,2 
Totals 72 100 

(MEC/FNDE 2000, results organized by the author) 
Next, we have PNLD 2000, again an assessment of books for the first four grades. Its main 
distinguishing feature was that, from that year on, publishers could present only complete 
collections for assessment, even though the exclusion of one of their volumes did not disqualify the 
whole collection. Besides, with the growing demands on the area coordinators, adjunct coordinators 
were added. Furthermore, the assessment criteria were refined: collections could now be excluded 
because of bad or inappropriate didactical methodologies. The assessment results are shown in 
TABLE 6. 

Table 6 
PNLD 2000 – Assessment of Mathematics 

Textbooks for Grades 1 through 4. 
 Number of 

books 
% 

RD 16 13.1 
REC 24 19.7 
RR 38 31.1 

EXC 44 36.1 
Totals 122 100 

(Personal files of the author) 
In the same year, 2000, the MEC established the Comissão Técnica do Livro Didático (Textbook 
Technical Committee), on the one hand to advise MEC on textbook policy, on the other hand to 
supervise, for MEC, the carrying out of the assessments. The following year, 2001, this committee 
issued a very important document, Recomendações para uma política pública de livros didáticos 
(Batista 2001) (Recommendations for textbook public policies). The report proposed a 
comprehensive approach to a policy of didactic materials, not only textbooks: dictionaries, setting 
up of school libraries, supplementary reading material, maps, literary works adapted for use with 
children and youngsters, use of several media in the teaching and learning process, etc. The 
Comissão Técnica considered all these as a galaxy with the textbook at its centre. These proposals 
slowly implemented. In addition, in 2001, the Comissão Técnica organized a pilot research on the 
choice and use of textbooks used in public schools. This was supposed to be followed by a 
comprehensive research, which so far has not been carried out. 
The assessments for PNLD 1997 through PNLD 2000 were carried out directly by MEC. In 2001, it 
decided to delegate the assessment to a Brazilian private organization with expertise in the 
assessment and evaluation of educational programs. The Comissão Técnica do Livro Didático 
strongly opposed this. Instead, the Comissão Técnica defended forcefully that public universities 
should carry out the assessments, supervised by the Comissão Técnica and MEC. This idea 
prevailed and, starting with PNLD 2002 until PNLD 2018, the assessments were carried out by 
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public universities; in the case of mathematics this has been done, until PNLD 2018, by 
Universidade Federal de Pernambuco (UFPe).  
The reason for this recommendation was threefold: Firstly, by their very nature, university 
departments, institutes or schools would not hide their assessing methodologies. Secondly, this 
would foster research on textbooks in the universities. In addition, thirdly, if it were required that 
the selected universities choose members for their assessment teams not only among their 
personnel, but from all over the country, this would create, in Brazil as a whole, an assessment 
community in universities, educational research institutions, laboratory schools and in state and 
county education boards.  
It was very fortunate, particularly for mathematics, that MEC followed Comissão Técnica’s advice 
and delegated the assessment execution to public universities. While in other areas, research on the 
respective textbooks was already active in Brazil, in mathematics not much had been done before 
PNLD (UNICAMP 1989). The assessments fostered the development, in the country as a whole, of 
a mathematics textbook assessment culture and made research on mathematics textbooks a serious 
subject in several mathematics education departments, schools of education and mathematics 
departments. Many doctoral and MSc dissertations have been written on this subject from 2000 on, 
after PNLD had grown roots.7  
During this consolidation period, from PNLD 1997 through PNLD 2000, the assessing criteria were 
discussed with the assessors convened each year and progressively refined. Many lasting features 
were established: how many persons assess each textbook; the reports the assessors have to write, 
the structure of the catalogue that is sent to all schools. At first, the mathematics assessment had 
only a coordinator; starting with PNLD 2000, we have a coordination group with a variable number 
of advisors. In mathematics, since these first assessments, the final reports the experts write are 
reviewed again and again by all the coordinating group and the mathematics representative in the 
Comissão Técnica. One person assumes the role of devil’s advocate, vigorously defending the 
excluded collections and attacking the approved ones. This has guaranteed a very high quality; so 
far, no attempts by authors and publishers to challenge the mathematics assessments have 
succeeded. 
Expansion and flowering: PNLD 2002 – PNLD 2013 
PNLD 2002, for grades 1 through 4, was the first assessment performed by UFPe. Publishers  

Table 7 
PNLD 2002 

Assessment of Mathematics Textbooks for Grades 
1 through 4.  

 
Number of books % 

RD 12 17,65% 

REC 20 29,41% 

RR 20 29,41% 

EXC 16 23,53% 

Totals 68 100% 
(Personal files of the author) 

                                                                            
7 An ongoing project undertaken by this author and other persons involved with the mathematics assessments 
has already listed almost 130 MSc or PhD dissertations dealing with mathematics textbooks or PNLD 
policies, and there are more to locate. 
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presented 17 collections, each one with four books. For the first time, each collection was assessed 
as a whole: if one of its books was disqualified, the whole collection was excluded. Of the 68 books 
presented, 34 had never been assessed before. The results are given in Table 7. 
It is interesting to compare the results of the two first assessments of books for grades 1 though 4, 
respectively for 1999 and 2002 (Figure 3). 

 
Figure 3 (Personal files of the author) 

 
We notice a considerable percent increase in the best category (RD) from 5.6% to 17.7%. There 
were modest percent increases in the REC and RR categories (respectively from 22.2% to 29.4% 
and from 25% to 29.4%), and a very good percent reduction in the number of excluded books, from 
47.2% to 23,6%. 
From that year on, the textbook policies proposed in the report written by the ComissãoTécnica in 
2001, (Batista 2001) were gradually implemented. FNDE started the distribution not only of 
textbooks for elementary, middle and high schools, but also of textbooks for adult education classes 
and for rural schools, dictionaries, geographic atlas, supplementary reading material for students, 
books for school libraries, all of them assessed.8  
Starting with PNLD 2005, MEC finally bowed to publishers, and stopped ranking approved 
textbooks: From that year on, there were only two categories, approved and excluded books. 
Assessment of high school books started in 2004, as a pilot project, not part of PNLD. The 
following year, this program became nationwide. In 2009, high school mathematics textbooks were 
assessed again, this time by Sociedade Brasileira de Matemática (Brazilian Mathematical Society). 
Three years later, all textbooks assessments were incorporated into PNLD, and UFPe carried out 
PNLD 2012. 
PNLD 2010, for elementary school (EF1), had a new structure. In that year, this school level was 
increased from four to five years. The first two years of this period had classes only in Portuguese 
language and alfabetização matemática, that is, mathematical literacy, basic mathematics for six 
and seven years old children. In 2013, this was increased for 3 years. From PNLD 2010 on, all 
assessments of textbooks for elementary school (EF1) have been divided in those two parts: 
collections for these initial years (first, 2 years; later on3 years), and collections for the final years 
(first, 3 years; later on 2 years). 
A very important fact was a law (Law 7084, of January 27, 2010 ), passed in 2010, which made the 
pedagogical assessment of books for PNLD mandatory. It also created the category of conditionally 
approved collections, that is, collections that can be approved if authors and publishers correct 
minor mistakes found during the assessment process. Besides, publishers could now appeal against 
the exclusion of a collection. We mention again that in mathematics, so far, no appeals have been 
successful. 

                                                                            
8 This expansion was reversed, from 2014 on: now, FNDE buys just textbooks. 
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 Changes and curtailments: PNLD 2014 – PNLD 2018 
In an attempt to “modernize” the teaching and learning processes, MEC decided to distribute digital 
textbooks, starting with PNLD 2014. Publishers could submit traditional collections or collections 
that, besides the printed books, had pdf versions with links to multi-media material, called “digital 
objects”. In mathematics, the quality of these objects was very bad, and just a few digital 
collections were approved. This experience continued until PNLD 2017, with some variations. 
Because of lack of funds, the digital collections approved for PNLD 2016 and PNLD 2017 were not 
bought and for PNLD 2018 only paper collections could be submitted. It is a pity that MEC stopped 
buying digital materials: in the same way that paper textbooks improved slowly since the beginning 
of the assessments, we hoped to see improvement in the new digital collections. In this period, the 
mathematics assessment coordination developed, with considerable success, an innovative 
methodology for the assessment of digital collections.  
Starting with PNLD 2016, institutions had to compete to carry out the assessments. In mathematics, 
there was very little competition. In the other areas, competition slowly diminished. At first, 
institutions had little idea of the program complexities and of the requirements they had to satisfy 
and were disqualified and did not renew their attempts. Also, the government was taking some very 
disquieting decisions concerning PNLD, and there were rumours that much more was to come. 
Thus, for PNLD 2018, in some areas, it was so difficult to find institutions willing to compete that 
the deadline for applications had do be extended and members of the Comissão Técnica had to 
convince groups to compete.  
Political developments in Brazil culminated in a change of government in 2016. The pressures on 
the assessments became stronger with the new government and PNLD as a whole came under heavy 
attack. It was considered too expensive; it would be better to allocate the money to the several state 
boards of education (Secretarias Estaduais de Educação) and let them choose and buy books as they 
saw fit. Also, pressure from conservative groups increased constantly. They had strident complaints 
against the approved textbooks for science and social studies. Some of these groups were against 
the presentation, in science books, of evolution as a scientific theory; it should at most be 
mentioned as a hypothesis, they said. In social studies, a more controversial area, some groups were 
against presenting, for example, Mao Zedong’s accomplishments in uniting china. Others were 
squarely against discussing gender issues, as done in some textbooks. All these groups had access 
to the media and influence with congressional representatives, who often complained of distortions 
in the assessments, claiming it was in the hands of irresponsible university professors who had no 
direct experience with children and youngsters’ education. It was said that the assessments carried 
out by the universities had ideological bias and the Federal Government had no control of its 
results. In addition, because of the severe Federal Government financial crisis the assessment 
budget was drastically cut. The Comissão Técnica that had been an advisory board on textbook 
policies became just a pro-forma ratifying body of policies formulated without its participation. As 
a result, in 2017, the government passed Law 9099. As stressed by government officials, control of 
the assessment was thereby taken away from the universities and concentrated in MEC, starting 
with PNLD 2019. A disquieting fact was the inclusion of confessional  schools  among the ones 
serviced by PNLD. 
For PNLD 2018, MEC set up a data bank from which half of the assessors had to be chosen by lot 
(until then, assessing experts were chosen by the universities that carried out the assessments). In 
mathematics, since PNLD 2000 a patient process of weeding out resulted in a very good group of 
assessors, into which, each year, new members were added, while others were discarded. As of 
PNLD 2019 all the assessors must be chosen by lot from the data bank. 
Besides, the Comissão técnica, whose members are all chosen by the Minister of Education, was 
very enlarged, and will include from PNLD 2019 on, members from several scientific, educational 
and professional   organizations, some of them   with specific agendas to fight for. Until now, books 
had to last three years, excepting the ones for first grade. As a bow to publishers, from PNLD 2019 
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on books shall be disposable, that is, students may write answers on them, and thus they cannot be 
handed over to next year’s students.  
This history of twenty years of the mathematics textbook assessment program does not, as all 
histories, dwell upon all details. We now describe some particular points of the program, sometimes 
commenting their evolution. 
Some specific points of the assessments 
The assessments are part of Programa Nacional do Livro Didático (PNLD – National Textbook 
Program), a long chain of steps designed to deliver textbooks to (almost) all public schools in the 
country before the first school day of each year (First workday in February). The assessment is 
funded by Fundo Nacional de Desenvolvimento da Educação (FNDE – National Education 
Development Fund), created in 1968, that finances many MEC, among them the distribution of 
books and other school materials. 
Since PNLD 1997, this chain of steps begins when FNDE issues a call for publishing houses 
interested in selling textbooks. This is a legally binding very long document, which, among many 
things, deals with the technical characteristics the books must have, like size, paperweight, 
maximum number of pages, among others; it also stipulates the legal framework, like copyright 
rights, the deadline for books submission, and so on. And it includes the assessment criteria, both 
general, for all school disciplines, and the  specific ones, for each area. 
Assessment criteria 
The two groups of criteria have varied slightly along the years, and we summarize them as follows. 
General criteria that the collections must conform to   (freely translated): 

a) Comply with the laws and other legal documents related to Brazilian education. 
b) Obey the ethical and democratic principles that underlie a republican and just 

society. 
c) The collection methodology should be in accordance with the methodological 

principles propounded in the Teacher´s Manual. 
d) Present correctly concepts, information and procedures. 
e) Promote interdisciplinarity. 
f) The editorial project must be in line with the collection´s didactical, scientific and 

pedagogical goals.  
The laws and legal documents mentioned in a) define the goals of elementary, middle and high 
school. Besides, a) and b), jointly, forbid any kind of discrimination whatsoever. In addition, the 
collections must also show the variety and the richness of the several cultures that make up 
Brazilian society, in particular the contribution of African Brazilians. Besides, we have the children 
and youngsters statute (Estatuto da criança e do adolescente, Law 8069 of July 13th 1990) that 
specifies their rights and need of protection and Senior citizens act (Estatuto do Idoso, Law 10741 
of October 1st  2003). 
The specific criteria for mathematics are (freely translated): 
• The collection must present all fields of school mathematics, adapted to the student’s 

cognitive abilities, (for elementary and middle schools (EF1 And EF2); and  numbers and 
operations, geometry, measurements, algebra data analysis and probability, for High school 
–  Ensino Médio). 

• The collection must stimulate the development of basic cognitive abilities by the student, 
such as observation, comprehension, argumentation, analysis, synthesis, communication of 
mathematical ideas, memorization. 

• The collection must stress concept development and the power of mathematics for solving 
problems. 
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• The teacher´s manual must show the didactical choices available to the teacher and how to 
select, if he wants to, the topics that will be presented and in which order this might be done.  

• The teacher´s manual must present detailed answers to all problems and exercises and guide 
the teacher on how to make the best use of them. 

• The collection cannot advertise goods, commercial services or brands of any kind. 
The bolts and nuts of the assessment 
From PNLD 1997 through PNLD 2018, the starting point of each mathematics assessment was a 
meeting of  all persons involved in the project. The group studied the assessment criteria, learned 
how to fill out the checklists and how to write the required reports. After this, each one received the 
collections she or he was going to assess. Usually, they had one month to work with each 
collection.  
Each expert filled out a long checklist, which covered the contents and methodology of both the 
student book and the teacher´s manual, and proposed that the collection be accepted, excluded or 
should be corrected before being accepted. After this, the two experts met and filled out a detailed 
joint checklist and wrote a joint report stating clearly the reasons for their decision. If the collection 
was approved or should be corrected, the team wrote, jointly, a short summary, called resenha of 
their report to be included in a catalogue sent to all schools in the country. These resenhas had a 
common structure, and were divided in sections that dealt with specific features of the book so that 
the teacher could have an idea of how the author deals with the mathematics content and what are 
its methodological characteristics. There was also a discussion of the teacher´s manual and 
suggestions on how to use the book in the classroom. If the team in charge of a collection did not 
agree on a decision concerning its status, the coordination asked someone else to examine the 
collection. 
After the assessors turned in their reports, the coordinating group started to organize all this 
material. Three difficulties were always present: 

a) What is the boundary between a serious error which will automatically exclude the whole 
collection and a minor mistake that can be corrected by authors and publishers? 

b) How can one be sure that problems which excluded a collection are not present in approved 
ones? 

c) For approved collections, does the resenha match the detailed report? Is there any 
disagreement between them? Does it faithfully present the collection to teachers looking for 
the textbook they will use? Is it really helpful for the teacher?  

These difficulties were tackled by the coordinating group with intensive work during several 
months, reading over and over all checklists, reports, resenhas, cross-checking them with the actual 
textbooks. 
The catalogue of approved textbooks 
The Guia de Livros Didáticos, 9 has changed considerably during these twenty years of the 
assessments, from PNLD 1997 through PNLD 2018. At first, it contained just an introduction 
describing its purpose and a commented list of the approved collections.10 Now, it consists of an 
introductory message to teachers and texts that: stress the importance of choosing a good textbook; 
discuss the role of mathematics in school and society; present the assessment criteria; describe   the 
resenhas’ structure and how to use them efficiently to help to select a textbook; discuss the 
characteristic of the approved collections. In addition, of course, the resenhas for all the approved 
collections. 

                                                                            
9 All the catalogues can be downloaded from www.fnde.gov.br/programas/livro-didatico/guias-do-pnld. 
10 We remind that from PNLD 2000 on, only complete collections could be presented by publishers and that 
from PNLD 2002 on, if a book in a collection was excluded, the whole collection was ipso facto excluded. 
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A resenha, in PNLD 1997 a simple text that described the textbook and pointed out its strong and 
weak points, evolved along the years until it reached its very structured form in PNLD 2018:  first, 
comes a small presentation of the collection, stressing its good points and its eventual weaknesses, 
followed by a list of the collection’s contents, year by year. After this, we find several sections, as 
follows: 
1 – Content organization, which discusses the distribution, for each year, of the big areas of school 
mathematics (numbers, geometry, measurements and data handling, for elementary and middle 
school; numbers, algebra, geometry, statistics and probability, for high school). 
2 – Content presentation, which discusses how the collection presents each big are of school 
mathematics. 
3 – Didactical methodology, which discusses the didactical choices made by the collection’s 
authors. 
4 – Contextualization and interdisciplinarity, which discusses if they are genuine or artificial, just a 
pretext to satisfy the requirements set by the Edital. 
5 – Contributions to the student citizenship, which discusses whether the collection contributes to a 
critical consciousness of society’s problems and promotes the principles of a just, democratic 
society, without prejudices of any kind. 
7 – Editorial project and language use and correction, which discusses whether the editorial project 
promotes readability, the contents are easily identified, the illustrations are useful or just ornaments, 
graphs and maps are accurate and follow the prescribed norms for their presentation, and whether 
the language is correct and there is a variety of textual types. 
8 – Teacher’s Manual, which discusses whether it presents the authors’ conception of school 
mathematics and its role in society, the pedagogical and didactical choices made, whether the 
Manual  is really helpful to the teacher, both in content and for planning his course, and whether it 
has the answers to all proposed exercises, has extra projects and activities and bibliographical 
references for further study by the teacher. 
9 – In the classroom, which discusses the care the teacher must have to make good use of the book. 
What have been the effects of the mathematics assessment program? 
First and paramount, the improvement in the quality of the textbooks used throughout the country 
by millions of children and youngsters attending the public school system. In the early days of the 
assessment program, there were books which stated, for example, that a quadrilateral is a figure 
formed by four angles or that presented situations in which the total of percent shares exceeded 
100%. These extreme cases do not occur anymore. Of course, there are no perfect books, even the 
ones we ourselves write. 
Nationwide textbooks assessments in Brazil stopped in 1985 (Filgueiras 2011). From that year until 
1997, there were no assessments at all. The quality of mathematics textbooks became very low as 
shown by the pilot assessment of 1993 and by PNLD 1997, and steadily improved thereafter, as 
shown by the examination of PNLDs assessments reports.11 This is very strong indirect evidence of 
the effects of PNLD’s assessment on the quality of mathematics textbooks. Zúñiga (2007), 
investigated how authors changed and adapted their books to meet the stronger and stronger 
requirements of PNLD.  
A second effect of the assessment program is the growing importance given to textbook studies in 
education and mathematics education research groups all over Brazil, as we have already said. 
Thirdly, as also already told, the establishment of a growing community of teachers and researchers 
that have been members of the assessment. Textbook assessment has become part of many courses 
for prospective mathematics teachers. 
Has the assessment program guaranteed that schools receive “perfect books”? No. The process is 
regulated by a legally binding document (Edital) which has explicit criteria for approval. If a book 

                                                                            
11 Personal files of the author. 
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does not clearly violate one or more of these criteria, it cannot be excluded, even if the assessment 
group thinks it should not be used in schools. We are dealing here with a situation completely 
different from the analysis of one or a few textbooks for a Master’s or PhD degree. Assessment is a 
technical, difficult activity that requires trained personnel. Many mathematicians or mathematics 
teachers do not understand this, and claim that the assessment program approves books with errors, 
and that it is inconceivable that MEC put in the hand of children or teachers books that have such 
and such mistakes. Nevertheless, let us remember that mathematical rigor is contextualized: it 
depends on to whom and when you are speaking or writing.  
PNLD and Publishers 
Textbook publishing is big business in Brazil, due to the great number of books the government 
buys each year. It represents, year after year, more than 50% of the total amount of books published 
and sold in Brazil (Cassiano 2005, 2007). The money involved has attracted, in the last decade, 
international publishers (Cassiano 2007). Also, it is a market very dependent on government 
acquisitions. 
Brazil is among the top 10 countries in book sales (Cassiano 2007, p. 96), and textbooks represent 
around 50% of books sold. For the years 2015 and 2016, we have the results shown in Table 8: 

Table 8 
Books Printed in Brazil 

 2015 2016 
Textbooks 221,214,936 220,458,397 

Total 446,848,572 427,188,993 
FIPE, 2016. Table organized by the author 

For the total of textbooks sold in the same years, we have the results shown in Table 9, which 
shows that the textbook industry is greatly dependent on government acquisitions:  

Table 9 
Textbooks Sold in Brazil 

 2015 2016 
to the 

Government  
128,622,634 147,631,141 

To Others 50,772,492 47,962,585 
FIPE, 2016. Table organized by the author 

Prior to 1997, publishers had a perfect situation: an assured market, which grew steadily, because of 
the educational policies to promote inclusion, and no assessment of what they sold. Therefore, it 
was to be expected that they would react strongly against the first PNLD book assessment 
(Munakata 1997). In mathematics, there were no direct attacks to the assessment quality, but to the 
fact that the names of renowned authors were dragged in the mud and that some of them were 
rashly punished because of childish mistakes that had no influence on the student learning process, 
etc. 
In Brazil, there have been few studies of the publishing of mathematics textbooks. We mention, 
Zúñiga’s doctoral dissertation (Zúñiga 2007), that shows how authors and publishers changed their 
collections to fit PNLD’s assessment requirements. Cassiano’s dissertation (Cassiano 2007), does 
not specifically study mathematics textbooks, but how textbook publishing changed in Brazil in the 
last 20 years, particularly during 21st century, with the growing concentration of publishers and the 
presence of big international firms. Meksenas ([1992) and Munakata (1997) have studied the 
publishing of textbooks in general. 
If we compare the first elementary school books assessment, for PNLD 1997 with the assessment of 
the same school grades for PNLD 2016, we see a great decrease in the number of publishers that 
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submitted books, from 35 to 11! Even if we take into account the fact that some small publishers 
stopped presenting books, due to lack of success, there is still decrease. If we compare the numbers 
of publishers that presented books for the first three assessments with the publishers for 2016, we 
see a reduction from 16 to 11. The same number of publishers (11) presented books for PNLD 
2018. Of the 15 collections assessed for PNLD 2018 (high school) only three were new collections. 
The situation for the other school grades is similar (personal files of the author). This shows the 
existence of a general pattern: publishers have some collections approved in past assessments that 
are presented repeatedly, and, each time, a few new ones that in most cases are not successful.12 
There are several reports made by persons hired by publishing houses to evaluate manuscripts for 
production that their recommendations are not taken into account. Since there are no studies, at least 
in Brazil, of how publishing houses choose the manuscripts they publish, one cannot speculate on 
this fact. According Venezky (1992)  the same is true for other countries. 
How do authors and publishers react to the errors or small mistakes found in the collections and that 
can be corrected? With a few exceptions, they do not really try to improve their works. The most 
common reaction is to delete errors or paste in a local correction. Informally, we might say that 
publishers have “tamed” the mathematics assessment program. By this, we mean that, due to the 
stability and reliability of the mathematics assessments, they know that collections approved in the 
past will not be disqualified, so they do not see the need to improve them, and send each time, a few 
new collections, in the hope – usually wrong – that they might be approved. So, there is very little 
hope for renovation. 
One new feature is the growing presence of books authored by publishing houses. This practice was 
introduced recently, in the 21st century, by foreign publishers and is increasing. There have been, 
also, adaptations of foreign textbooks to Brazil, with very bad results. 
Some big education firms have also started to sell “educational packages” to states and counties, 
with textbooks, tests and exams, teacher training courses, and so on. Since states counties are not 
forced to accept the books freely distributed by MEC,13 more and more are buying these packages, 
in the hope that they will solve their school problems, particularly now, when there are state or 
national tests to assess school quality. These packages do not pass any assessment, and sometimes 
the quality of their didactic material is very, very low. So far, this new development has not been 
objectively studied, there has been only anguished bemoaning by educators.14 
Final Remarks 
We have listed above some accomplishments and characteristics of the mathematics assessments 
for PNLD, which definitely improved the quality of mathematics textbooks. Let us mention some 
things that remain to be done. 
First of all, there is no research on the way books are chosen and used by teachers. The Comissão 
Técnica has repeatedly asked that this be done, with little avail. The assessment process has been 
continuously refined, but what are the points that make a teacher choose a book? And how do 
teachers use their chosen textbooks? In 2001, there was a pilot research on these two issues, but a 
really comprehensive study has never been undertaken by MEC. Also, the assessments have never 
been evaluated! As a matter of fact, the whole PNLD, a very expensive and complex program has 
never been evaluated! 
There are many critics of PNLD and of its assessments. Discarding proposals of persons who felt 
they were unjustly harmed by the assessments (Sampaio 2010, 2012) there are those that have 
raised important questions about PNLD as a whole and about its assessments for example (Britto 
2011). A recurrent issue is the centralization-decentralization dispute. Why not let states and 
                                                                            
12 Personal files of the author, covering all the assessments, from PNLD 1997 through PNLD 2018. 
13 If a county or state does not want to receive PNLD’s textbooks they must notify MEC. They cannot 
receive these books and, at the same time, pay for some of these packages. Some counties have been sued by 
the Government because of this practice. 
14 For an exception, see (Britto 2011). 
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counties select and buy, with funds provided by the central government, the textbooks they will 
use? (Britto 2011). In the first years of the assessment, two states decided not to accept books 
bought by PNLD. One, for political reasons; the other, because it had its own didactic materials, 
including textbooks, that were tailored to the state’s educational and pedagogical planning. The 
state that had opted, for political reasons, not to receive books evaluated by MEC, when faced with 
the complexity of the task of assessing books, negotiating their acquisition and distributing them to 
all schools, gave up when the political complications were past.15 The other state has had a complex 
story in its relationship with PNLD (Romanini 2013). 
What changes should be done in the assessment program? Little thought has been given to this 
issue. One recurring proposal is that MEC institute a certifying procedure; publishers would present 
their collections, any time, that would be assessed and approved, or not, for a certain period. This 
would work more or less like the procedures of the Federal or State agencies that support research. 
So far, there have not been made comparative, objective studies on this point. The present model 
has undergone successive improvements, until it reached, in the case of mathematics, a very good 
“technical level”, as of PNLD 2018. This does not mean that there could not exist other, possibly 
better ways, to assess mathematics textbooks.  
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A MULTIMODAL APPROACH FOR THEORISING AND 
ANALYSING MATHEMATICS TEXTBOOKS 

KAY O'HALLORAN 
 

Introduction 
Mathematics textbooks play a critical role for the construction of mathematical knowledge through 
the ordering, presentation and explanation of mathematical concepts and problems and by providing 
solutions to those problems. As Usiskin (2013) claims, textbooks are "a vehicle for learning 
mathematics", where "the only other vehicle of comparable importance is the teacher" (p. 716). The 
centrality of mathematics textbooks for teaching and learning mathematics remains unchanged in 
the digital age. For example, O'Halloran, Beezer, and Farmer (2018) show that students work 
through online mathematics textbooks according to the coverage of the mathematical content in 
class, with greater use of the textbook prior to tests and exams. In other words, mathematics 
textbooks (hardcopy, pdf and online) are still "the centerpiece of a course" (Usiskin 2013, p. 715). 
It is not surprising that mathematics textbooks play a key role in teaching and learning mathematics. 
Modern mathematics evolved as a written discourse and thus mathematics knowledge is constructed 
in this format, albeit often today in digital form. In addition, mathematics has a systematically 
organised hierarchical knowledge structure within different areas and topics (see Bernstein 1999, 
2000). Mathematics textbooks play a critical role in organising and linking this content. This is 
evident in Figure 1(a), where the student is instructed: "You may recall studying quadratic 
equations in Intermediate Algebra. In this section, we review those equations in the context of our 
next family of functions: the quadratic functions" (Stitz & Zeager 2013, p. 188). Similarly, in 
"Worked Example 6 " in Figure 1(b) the reader is instructed to "recall" and pay "attention" to 
specific content in the instructions highlighted by the red banner (see right hand side of the page). 
It is also immediately evident from Figures 1(a) and 1(b) that mathematical knowledge is 
constructed using language, images and symbolism. The aim of this paper is to investigate how a 
multimodal approach to mathematics textbooks, where the functions of language, images and 
symbolism are taken into account in the construction of mathematical knowledge, sheds further 
light on the nature of mathematical reality and the problems associated with teaching and learning 
mathematics. As noted by Albert Einstein, mathematical symbolism and images are key to deriving 
mathematical ideas:  

 “The words of language, as they are written or spoken, do not seem to play any role in my 
mechanism of thought. The physical entities which seem to serve as elements in thought are 
certain signs and more or less clear images (...). Conventional words or other signs have to be 
sought for laboriously only in a second stage, where the associative play already referred to is 
sufficiently established and can be reproduced at will” Albert Einstein, extracted from a letter to 
mathematician Jacques Hadamard, cited in Cairo (2013, p. 141) 

In what follows, different multimodal approaches are briefly reviewed in order to situate the 
approach adopted here, which is based on Halliday's systemic functional theory (e.g. Halliday, 
2008, 2009a, 2009b). The approach involves the two concepts of 'system' – the architecture and 
underlying organisation of language, image and symbolism which enables these three resources to 
fulfil various functions in mathematics – and 'text' – the actual choices from these systems which 
are found in mathematics textbooks. From this perspective, the symbolism and images are theorised 
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as systems which have evolved to fulfil to certain functions in mathematics through their underlying 
organization and strong semantic links with each other.  

 
Figure 1(a) College Algebra (Stitz & Zeager, 2013, p. 188) 
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Figure 1(b) New Syllabus Mathematics 3 (Yeo et al., 2016, p. 13) 

That is, the two resources work together with language to construct mathematical knowledge, with 
each resource playing a specific role. After considering mathematics in this manner, mathematics 
textbooks are explored in order to show how language, symbolism and images work together to 
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create mathematical knowledge. The nature of linguistic constructions in mathematics textbooks is 
an integral part of this discussion. Lastly, the subsequent problems which arise in teaching and 
learning mathematics are investigated. 
 

Multimodal Approaches 
Multimodal analysis is a rapidly developing field that has largely arisen in linguistics and 
language-related fields in order to study how language combines with other resources (e.g. images, 
gestures, body proxemics and movements, sound and so forth) to create meaning (Bateman, 2014; 
Jewitt, 2014; Jewitt, Bezemer, & O'Halloran, 2016). This research agenda is particularly critical in 
today's digital world where language is typically accompanied by images and other resources such 
as those found in videos and other dynamic media. Jewitt et al. (2016) explain that there are three 
main approaches to multimodality; namely, the systemic functional approach, social semiotics, and 
conversation analysis. The first two approaches are based on Halliday's (1978) social semiotic 
theory of language, which was first extended to images and displayed art by Kress and van 
Leeuwen (2006) and O'Toole (2011) respectively. The systemic functional approach incorporates 
different levels of analysis (i.e. the materiality of the text, the 'grammatical' and discourse systems, 
the genre, and the contexts of the situation and culture). The social semiotic approach also involves 
analysis of the text, which is viewed in terms of social practices. The systemic functional approach 
and the social semiotic approach use the same fundamental principles established by Michael 
Halliday and thus are very similar in terms of theory and analytical approach. The conversational 
analysis approach to multimodality (e.g. Goffman, 1967) is concerned with 'mutually elaborating 
semiotic resources' and the sequential organisation and coordination of semiotic activity in social 
interactions (see Jewitt et al., 2016, p. 91). There are a variety of other multimodal approaches (e.g. 
geo-semiotics, multimodal (inter)action analysis, multimodal ethnography, multimodal corpus 
analysis, multimodal reception analysis (see Chapter 6 in Jewitt et al., 2016)), in addition to 
cognitive approaches to non-verbal and multimodal metaphor (Forceville & Urios-Aparisi, 2009). 
However, the various approaches are not discrete: for example, systemic functional approaches to 
multimodal corpus analysis (i.e. big data) are being developed (O'Halloran et al., 2016). 
In what follows, a systemic functional multimodal approach (O'Halloran & Lim, 2014; O'Halloran, 
Tan, & Wignell, 2018 in press) to mathematics textbooks is adopted to investigate the functions and 
underlying organisation of language, images and symbolism and the contributions of each resource 
for the construction of mathematical knowledge. This work has been underway since the 1990s (e.g. 
Chapman, 1992; Morgan, 1996, 2006). For example, Morgan (2006, p. 237) claims that social 
semiotics and systemic functional linguistics "provide tools that allow a principled description of 
the language of the texts being studied but also structure interpretation of the functioning of the 
texts within their contexts of production and consumption". The areas which have been investigated 
include the multisemiotic nature of mathematics texts (e.g. Lemke, 2003; O'Halloran, 1999, 2005, 
2008, 2015), mathematics classroom discourse (O'Halloran, 2000), the historical evolution of 
mathematics discourse (O'Halloran, 2014), and mathematics, grammar and literacy (O'Halloran, 
2007a, 2007b). Some of these findings, particularly those relating to mathematical symbolism, are 
reviewed in the ensuing discussion. Today, multimodal approaches are a major trend in 
mathematics education research as researchers increasingly investigate the functions of language, 
symbolism and images (e.g. Moschkovich, 2010). For example, Schleppegrell (2007) advocates that 
the multimodal (or multisemiotic) nature of mathematical constructions must be taken into account 
to understand the linguistic difficulties of learning mathematics. In light of these findings, 
mathematical symbolism and images are investigated as resources which have been specifically 
developed in collaboration with language to construct mathematical knowledge. 
Language, images and Symbolism 
Natural language has a range of functions which have evolved over time (e.g. Halliday, 2003, 
2004). That is, language is used to construct our experience of the world in terms of happenings and 
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events (experiential meaning). Language is used to logically connect those happenings, for example 
in terms of additive relations, time, causality and consequence (logical meaning). In addition, 
language is used to enact, maintain and challenge social relations through the expression of affect, 
social distance and status (interpersonal meaning). Lastly, language has resources for organising 
these meanings (textual meaning). The four 'metafunctions' of language (i.e. experiential, logical, 
interpersonal and textual) are realised through a range of grammatical systems which Halliday has 
documented in detail (e.g. Halliday & Matthiessen, 2014). Martin and colleagues have extended 
these descriptions to discourse systems which operate at the rank of paragraph and text (e.g. Martin 
& Rose, 2007). 
Mathematical symbolism evolved from language, but it developed a different form of underlying 
organisation because it was designed to fulfill different functions. That is, the symbolism was 
designed to describe patterns and relations (experiential meaning), and thus encoded mathematical 
entities, operations and relations in ways which made it possible to derive results (logical meaning). 
As such, the ways in which mathematical symbolism constructs mathematical reality differ from the 
ways which natural language constructs everyday reality. It is possible to track these differences by 
tracing the historical evolution of mathematics discourse. For example, as described in history of 
mathematics (see Nesselmann 1842), algebra initially developed as a form of rhetoric using 
statements and words. The language-based form of algebraic reasoning was dominant until the 16th 
century, when some elements were symbolised. Following this, syncopated algebra that consisted 
of linguistic statements with symbolic elements was developed. In the 16th century, François Viète 
(1540–1603) developed a symbolic algebra where all elements (numbers, variables, operations and 
relations) were symbolised and organised according to specific rules. However, René Descartes 
(1596–1650) created a major breakthrough in the 17th century with the development of Cartesian 
geometry where geometrical problems were solved algebraically. In this process, language, 
symbolism and images became fully integrated, providing access to the semiotic potential of each 
resource and the semantic expansions that took place with movements between them. From here, 
the symbolism was fully developed as a semiotic resource (i.e. a system of signs), providing the 
basis for modern mathematics.  
This raises several questions: i.e. how does the symbolism differ in relation to the functions and 
architecture of natural language? And how do these differences in the symbolism relate to 
mathematical images? These questions are explored by considering the metafunctions of language 
which by default formed the basis for the development of the symbolism.  
1. Experiential meaning (content): Natural language is used to construct human experience and thus 
has underlying systems for structuring thought and reality across the various dimensions of human 
life. On the other hand, mathematics is used to construct certain areas of human experience only; 
the description of patterns and relations (i.e. number, quantity and space). However, knowledge in 
these areas expanded through various innovations. That is, the symbolism was designed to encode 
complex configurations of mathematical entities, operations and relations in a simple and 
unambiguous fashion, making it possible to use and manipulate the symbolic descriptions to derive 
results. A variety of techniques were developed to achieve this goal. For example, general symbols 
were used to represent mathematical participants and operations, and certain mathematical 
operations were ellipsed (e.g. multiplication). Brackets and rules of order were developed so that 
the mathematical operations unfolded in a particular order which was not necessarily in the 
sequential order in which the operations were written. This is a marked departure from language 
where thought and reality are structured around linear sequences of happenings, where each 
happening consists of a limited number of entities and a single process. Furthermore, it was 
possible to represent the symbolic descriptions (in most cases) in graphs, diagrams and other visual 
forms. This was a significant advance because the human visual system functions so that the 
mathematical representation is viewed a whole together with its constituent parts, following Gestalt 
theory (Koffka, 1935). This opens up a new vista for understanding and deriving mathematical 
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results. Namely, symbolic reality can be visualised, resulting in new representations of 
mathematical ideas and concepts that are otherwise unattainable: i.e. "the whole is something else 
than the sum of its parts" (Koffka, 1935, p. 176). In summary, mathematical symbolism provides 
the means for exactly describing the relations and interactions of multiple entities in what is in 
essence a new version of reality. Importantly, this new reality can be visualised, thus making it 
possible to move beyond the realm of its constituent parts. 
2. Logical meaning (logical relations): The symbolism was designed to be unambiguous and easily 
manipulated in order to reorganise mathematical operations and relations, increasing the power of 
the resource as a tool for logical thinking. Significantly, these descriptions combine with visual 
representations to provide insights beyond those possible with the symbolism and language alone. 
The symbolism is the resource through which results are derived and problems are solved, but 
mathematical images play an indispensable role in this process, given that they contribute new 
representations of mathematical reality. That is, both the symbolism and the images are powerful 
tools for thinking, as Einstein points out (cited in Cairo, 2013, p. 141). 
3. Interpersonal meaning (enactment of social relations): Language is used to negotiate social 
relations, hence there are a variety of linguistic systems for this purpose (e.g. speech functions to 
give and request information and goods and services; positive and negative polarity; modality 
systems for expressions of probability, usuality, willingness and obligation; and expressions of 
attitude, judgement and affect). However, mathematical symbolism was not designed to deal with 
the complex interplay of human relations, hence the systems for interpersonal meaning found in 
language were either constrained or removed altogether. For example, mathematics largely consists 
of statements (with information) and commands (to undertake actions). Expressions of probability, 
usuality, willingness and obligation (e.g. might, could, would, should) are replaced with probability 
statements and statistical formulations. As a result, mathematical statements and commands are 
absolute with positive and negative polarity (i.e. "is" and "is not"). Mathematical images are similar, 
given the connections to the symbolism and the nature of the relations which are portrayed. 
Together, the interpersonal stance of mathematics is one of certainty, unlike everyday language 
with its various expressions of certainty, doubt and obliqueness. 
4. Textual meaning (organisation of the message): Mathematical symbolism is a written resource so 
space can be utilised to make meaning (e.g. division, exponents, subscripts and superscripts). The 
use of space as a system for making meaning, together with the spatial layout of mathematical 
content, assists with the economy of the expression in mathematics. Furthermore, the advantages of 
symbolism (economy of expression, simplicity and clearly defined meanings) were combined with 
the advantages of the visual image (representation of the complete mathematical relations and the 
constituent parts), resulting in mathematical formulations which are specifically organised to 
provide immediate and unequivocal access to experiential and logical meanings of the mathematical 
content. 
Together, language, image and the symbolism are formidable tools for constructing mathematical 
reality which focuses on experiential meaning and logical relations with little variation in 
interpersonal meaning. The link between the symbolism and images is critical because the 
mathematical relations can be seen as a whole, providing vital insights when results are derived 
symbolically. That is, the patterns are seen visually, but they are manipulated symbolically. 
Language is used to contextualise the mathematical knowledge which is derived symbolically and 
visually.  
Mathematical knowledge is constructed by accessing the potential of language, images and 
symbolism, together with the ability to move from one semiotic resource to another. The 
significance of the moves between the three resources is well recognised: "In any problem solving 
situation, you are actually translating information from one form to another”, with alternative paths 
for getting from words to symbols (Collingwood, Prince, & Conroy, 2017, pp. ix-x). However, the 
semantic expansions which occur in these translations are less understood. For example, in Figure 
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1(a), linguistically "a function" is a noun (an entity). However, symbolically a function is a complex 
configuration of mathematical entities and operations: e.g. f(x) = ax2 + bx + c. Visually, a function is 
a curve consisting of a series of points which correspond to the various values of x and y. The three 
semiotic versions – the noun (linguistic), the complex of mathematical operations and relations 
(symbolic) and the curve (visual) – are choices from the three different semiotic resources. It is 
possible to give exact translations of each choice, but each choice is not semantically equivalent: 
i.e. a noun ↔ a configuration of mathematical operations and relations ↔ a visual entity with parts. 
These representations of the mathematical content are different and they are used for different 
purposes. In order to investigate this further, extracts from mathematics textbooks are considered 
below, where mathematics textbooks are considered as a genre consisting of sections and 
subsections with clusters of linguistic, symbolic and visual elements. After exploring mathematical 
textbooks and the movements between the three resources in more detail, the implications of the 
multimodal approach for teaching and learning mathematics are considered. 
Mathematical Textbooks 
The systematic organisation of mathematical knowledge is evident in the structure of mathematical 
textbooks. That is, mathematics consists of different areas and topics, each of which are 
documented in various mathematics textbooks. The textbooks consist of chapters with sections and 
subsections. Each chapter has a section heading with sub-sections: e.g. topic headings, theory 
development (with definitions, laws, theorems and other results), theory application (with 
applications of the mathematical content), worked examples, exercises, and solutions (in most 
cases). Examples of subsections from university and school mathematics textbooks are displayed in 
Figures 2(a) and 2(b) respectively. Other elements of mathematics textbooks include historical 
anecdotes, photographs of real-life applications of mathematics (e.g. bridges and buildings) and 
other elements designed to attract interest. In this way, mathematics textbook writers attempt to 
provide variations of interpersonal meaning in order to engage readers. Regardless, the structure 
and content of mathematics textbooks (with linguistic, symbolic and visual elements) are 
well-defined and immediately recognisable to anyone who has studied mathematics. Einstein 
explains that language only comes into play in mathematical thinking once the content is 
"sufficiently established [symbolically and visually] and can be reproduced at will” (cited in Cairo, 
2013, p. 141). The mathematical content in mathematics textbooks is reproduced knowledge, thus 
the role of language in this context is first investigated below. 
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Figure 2(a) Structure of Mathematics Textbooks (Stitz & Zeager, 2013, p. 188) 
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Figure 2(b) Structure of Mathematics Textbooks(Yeo et al., 2016, p. 13) 

 
The various subsections of a mathematics textbook have distinct linguistic patterns in terms of 
experiential meaning. For example, topic headings where new content is first introduced are likely 
to contain mental processes (e.g. thinking, recalling) and material processes (actions). Similarly, 
worked examples are likely to contain material processes (e.g. actions). However, when 
mathematical theory is being developed and drawn upon, relational processes (which relate one 
entity to another) are likely to dominate. For example, the various process types from Stitz and 
Zeager (2013, p. 188) are displayed in Figure 3(a), with mental processes (green), material 
processes (red), and relational processes (yellow). These process types are displayed in relation to 
the subsections in Figure 3(b), showing the clusters of process types according to the subsection 
type. Importantly, clusters of relational processes are found when the mathematical content is 
developed (e.g. theory development subsection). Similar patterns of experiential meaning are 
displayed in Figures 3(c) and 3(d) which is a high school mathematics textbook (Yeo et al., 2016, p. 
13). The various clusters of experiential meaning in the subsections of mathematics textbooks 
reveal how mathematical content is introduced, reviewed and developed. That is, students are 
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instructed to carry out actions in certain sections (topic headings introducing new content, the 
instructions in worked examples) but those actions involving working with mathematical content 
which is largely relational in nature, as seen in the theory development subsection (Figure 3(b)) and 
the solutions to problems (Figure 3(d)). Moreover, the symbolism consists of mathematical 
operations and relational processes (O'Halloran, 2005, 2015). In what follows, the relational 
processes (coloured yellow in Figures 3(a) to (d)) are investigated further because these linguistic 
constructions are key to understanding mathematical content. 
 

  
Figure 3(a) Linguistic Patterns (Stitz & Zeager, 2013, p. 188) 
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Figure 3(b) Linguistic Patterns in Sections (Stitz & Zeager, 2013, p. 188) 
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Figure 3(c) Linguistic Patterns (Yeo et al., 2016, p. 13) 
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Figure 3(d) Linguistic Patterns in Question and Solution (Yeo et al., 2016, p. 13) 

The linguistic construction "The solution of a pair of simultaneous linear equations is given by the 
coordinates of the point of intersection of the graphs of the two equations" (Yeo et al., 2016, p. 13) 
(see Figure 3(c)) contains three elements, as displayed in Table 1(a): 
• The relational process: "is given" (in the passive form "is given by").  
• Two entities: "The solution of a pair of simultaneous linear equations" and "the coordinates 

of the point of intersection of the graphs of the two equations"  
Table 1(a): Encoding experiential meaning in language 

The solution of a pair of 
simultaneous linear equations 

is given (by) the coordinates of the point of 
intersection of the graphs of the 

two equations.  
Entity (noun) Relational Process (verb) Entity (noun) 

 
The experiential content is encoded linguistically within the two entities (i.e. the two nouns) which 
are equated with each other through the process "is given by". As can be seen in Table 1(b), the first 
noun "the solution of a pair of simultaneous linear equations" involves two levels of 
postmodification of the head noun "the solution". A similar pattern is seen in the second noun, "the 
coordinates of the point of intersection of the graphs of the two equations" where there are four 
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levels of postmodification. Moreover, some elements of these two nouns (e.g. "the solution", 
"equations" and "intersection") are derived from processes (i.e. "solve", "equate" and "intersect").  

Table 1(b): Encoding experiential meaning in a noun 
The solution of a pair of simultaneous 

linear equations 
Head noun Postmodifier 

  Post-Postmodifier 
 

the coordinates of the point of intersection of the graphs of the two equations 
Head noun Postmodifier 

  Post-Postmodifier 
   Post-Post-Postmodifier 
    Post-Post-Post-Postmodifier 

The example illustrates how experiential meaning is encoded in nouns in mathematical writing. 
This involves a shift from processes (such as solve, equate and intersect) to nouns (solution, 
equation and intersection) with various postmodification (and potentially premodification) 
elements. Halliday (1998, 2006, 2006 [1993]) refers to this semantic shift from processes (or 
happenings) to entities as "grammatical metaphor", where meaning is compressed into nouns. This 
has several important implications. First, mathematical writing is very dense and thus difficult to 
read, write and understand. Second, this grammatical strategy in scientific writing is fundamentally 
different to that found in mathematical symbolism where experiential meaning is encoded as 
embedded groupings of mathematical processes and entities. This is illustrated in the example: "The 
variables x and y are connected by the equation y = 2x2 – 5x – 6", displayed in Table 2. 

Table 2: Encoding experiential meaning in language 
The variables x and y are connected (by) the equation  

y = 2x2 – 5x – 6 
Entity (noun) Relational Process (verb) Entity (noun) 

In Table 2, the two entities are related to each other, and each has a symbolic expression that 
defines the entity (i.e. "the variables x and y" and "the equation y = 2x2 – 5x – 6"). In the entity "the 
equation y = 2x2 – 5x – 6", the linguistic element "the equation" is a noun, derived from the process 
"equate". In contrast, the symbolic element "y = 2x2 – 5x – 6" is a complex of mathematical entities 
and processes. This is illustrated by the square brackets ([[....]]) which group together mathematical 
symbolic entities with the associated mathematical operations: 
y = [[[[2x[[xxx]]]]– [[5xx]] – 6]] 
The level of embedding of configurations of mathematical entities and processes in "y = 2x2 – 5x – 
6" is quite extensive, as seen by the double brackets. This grammatical strategy of embedding in the 
symbolism can be contrasted with the strategy of encoding meaning in nouns found in language. 
The implications of the differing methods for encoding experiential meaning in natural language 
and the symbolism are discussed in relation to teaching and learning mathematics. Before doing so, 
it is worth noting that mathematics has many technical terms in the form of nouns. These technical 
terms are organised into taxonomies: that is, (a) this is a part of this (e.g. a line segment is part of a 
triangle) and (b) this is a type of this, (e.g. a quadratic function is a type of function). For example, 
the technical terms in Stitz and Zeager (2013, p. 188) and Yeo et al. (2016, p. 13) are coloured blue 
in Figures 4(a) and 4(b). As these examples illustrate, mathematical writing has many technical 
terms, and each term has a specific meaning in relation to others in accordance with the 
accompanying taxonomy. This adds to the complexity of reading and understanding mathematical 
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content. Before turning the implications of the nature of mathematical writing, the shifts between 
language, image and symbolism are considered in more depth. 

 
Figure 4(a) Technical Terms (Stitz & Zeager, 2013, p. 188) 

 



 O’Halloran 

 40 

 
Figure 4(b) Technical Terms (Yeo et al., 2016, p. 13) 

 

Movements between the three resources 
The movements between language, symbolism and images are vital, not only because these result in 
access to different meaning potentials of the three resources, but also because elements from each 
resource can be 'resemiotised' into another form and thus recontextualised into a new semantic field. 
This is particularly significant, given that the three resources structure mathematical reality 
differently, according to the purpose of each resource. 
 
For example, in "Worked Example 6" in Figure 1(b), the students are asked to (i) complete the table 
for y = 2x2 – 5x – 6; (ii) draw the graph for y = 2x2 – 5x – 6 for -2 ≤ x ≤ 4 and (iii) solve the equation 
2x2 – 5x – 6 = 0. The instructions contain material (action) processes in the form of commands. That 
is, students are required to undertake actions in a mathematical world which is largely constructed 
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symbolically and visually. The solution contains (i) the table, (ii) the graph and (iii) statements with 
the answer: "From the graph, the co-ordinates of the point of intersection of y = 2x2 – 5x – 6 and the 
x-axis (i.e. y = 0) are x = - 0.9 and x = 3.4. ∴ The solutions of the equation 2x2 – 5x – 6 = 0 are x = - 
0.9 and x = 3.4." In addition to completing the table and drawing the graph, the students need to 
understand that the solution is given by the intersection of y = 2x2 – 5x – 6 and y = 0 (i.e. the x axis).  
The solution to the problem involves a series of shifts between language, image and the symbolism. 
That is, "the equation" (noun) is a complex of symbolic relations (y = 2x2 – 5x – 6 and 2x2 – 5x – 6 
= 0) which is used to derive a series of mathematical relations (i.e. the coordinates). These relations 
become points (entities) in the graph. This series of points creates a new representation in the form 
of a graph, confirming that the sum of the parts is other than the whole (Koffka, 1935). The graph is 
used to locate the intersection of y = 2x2 – 5x – 6 and y = 0. To solve this problem, linguistic, visual 
and symbolic grammars need to be understood, in particular in relation to each other. That is, the 
shifts are from language and symbolism, to image to language and symbolism, as listed below. In 
each case, the shifts of meaning are not equivalent semantically: 
• Problem (linguistic, symbolic) 
• Mathematical relations (symbolic): y = 2x2 – 5x – 6 and 2x2 – 5x – 6 = 0 
• Table (symbolic): Relational processes 
• Graph (visual): Entities (points)  
• Graph (visual): new representation (graph) 
• Solution (linguistic and symbolic): The co-ordinates of the point of intersection of y = 2x2 – 

5x – 6 and the x-axis (i.e. y = 0) are x = - 0.9 and x = 3.4. ∴ The solutions of the equation 2x2 
– 5x – 6 = 0 are x = - 0.9 and x = 3.4. 

Beyond these movements across language, image and symbolism, a large body of mathematical 
knowledge needs to be drawn upon. This is explained linguistically in the form of relational 
processes appearing under the banners "RECALL" and "ATTENTION" (see right hand side of 
Figure 3(c)). However, as discussed above, the writing is very dense and difficult to understand, and 
moreover, the actual background knowledge is not provided, rather it is referred to. The 
implications of the hierarchical nature of the various domains of mathematical knowledge are 
further discussed below. 
 

Problems with teaching and learning mathematics 
The unique problems which occur in the teaching and learning of mathematics are exemplified in 
mathematics textbooks. First, mathematics is primarily concerned with the expansion of 
experiential and logical meaning, and thus interpersonal meaning is toned down to the extent of 
being formulaic. The interpersonal stance across language, image and symbolism is one of 
certainty, making it somewhat daunting for learners of mathematics. In addition, the layout and 
ordering of mathematical content in the mathematics textbook into chapters, sections and individual 
elements are also standardised, given the importance of organising mathematical knowledge into 
various domains, and developing content within each topic of those domains. 
Mathematical writing (i.e. the linguistic constructions) is difficult to read and understand, given the 
amount of content which is condensed into long noun groups, the relational processes and 
operations which are used to configure mathematical entities, and the technical terms which have 
precise meanings in accordance with different taxonomies. Mathematical symbolism is also 
difficult to read and understand because it constructs a reality which is different to that found in 
language. That is, mathematical constructions are streamlined into embedded configurations of 
mathematical operations using special symbols, ellipsed processes, brackets and rules of order that 
express the mathematical content in the simplest manner possible so it can be used as a tool for 
logical thinking. That is, the underlying architecture and systems for language and symbolism are 
different. Significantly, mathematical relations can be visualised in many cases (though not all), 



 O’Halloran 

 42 

which in turn introduces new mathematical representations for expanding the experiential and 
logical domains of mathematics. The images have unique strategies of representing mathematical 
relations as well. 
In addition, a key problem is the hierarchical nature of mathematical knowledge where different 
topics and domains build upon previous knowledge. To counter this problem, textbook writers 
explicitly refer to the background knowledge which is required, as seen in the examples considered 
above. Also, attempts are made to explain how to solve mathematical problems, as shown in Figure 
5 where readers are instructed to undertake various actions in relation to the symbolic derivation of 
the solution to the problem. These linguistic commands direct the reader to perform different 
operations but the main difficulty is that the reader is required to work within mathematical 
constructions of reality which are symbolic and visual in nature, and thus differ from the types of 
constructions found in language. Thus, language can be used to describe, explain and issue 
commands, but ultimately mathematical reality is expressed symbolically and visually.  
The hierarchical knowledge structure across the various areas of mathematics, where new 
knowledge is based upon earlier definitions and results, can be accessed to a greater degree in 
online mathematics textbooks. For example, as shown in Figure 6, it is possible to link definitions, 
properties, theorems, examples, solutions and proofs an in new ways in online environments that 
extend beyond printed textbooks. In Figure 6, Beezer (2017) uses "knowls" referenced within the 
body of the page of the mathematics textbook "to provide relevant, supplementary information".1 
Unlike a hyperlink which opens up a new web page, a knowl displays the relevant information (e.g. 
definition, theorem, proof) at the right location which can be opened up and closed with the click of 
a mouse button. In this way, the mathematical content is linked "in-context", proving immediate 
access to the information which is required. Today 'design-free' markup language can be used to 
write mathematics textbooks which can be published in hardcopy, pdf and online versions 
(O'Halloran et al., 2018), thus providing access to the same content in different formats.  
 

                                                                            
1 https://aimath.org/knowlepedia/ 
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Figure 5: Linguistic instructions (Yeo et al., 2016, p. 10) 
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Figure 6: Linking and Accessing Content in Online Mathematics Textbooks (Beezer, 2017) 

 

Conclusion 
The multimodal approach to mathematics textbooks, where the functions and organisation of 
language, image and symbolism are taken into account, offers new opportunities for exploring how 
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mathematical knowledge is constructed and how meaning is expanded through movements across 
the three resources. Most importantly, the approach offers ways to show how mathematics orders 
thinking and reality, opening up the possibility of further exploration of the problems associated 
with teaching and learning mathematics. For example, mathematical reality is constructed 
symbolically and visually, and even though linguistic explanations and instructions are an essential 
part of mathematics textbooks (and classroom discourse), the symbolism and the image are ultimate 
tools through which mathematical reality is created. These tools need to be understood and 
mastered, along with dense technical writing found in mathematics textbooks. In addition, 
mathematical knowledge is built up in the hierarchical structures found in mathematical textbooks, 
hence it is essential to provide links and references to this content in the most accessible form 
possible. As seen above, online environments provide new opportunities for linking and accessing 
relevant mathematical knowledge. 
 
In this way, mathematics is positioned as a field which is designed to expand human knowledge in 
certain directions. The results of this endeavour and the technological innovations which have 
ensued (including computers) are remarkable, to say the least. Mathematics textbooks provide 
detailed accounts of mathematical knowledge (including the structure and organisation of this 
knowledge) and as such are critical resources for teachers and students alike. Mathematics textbook 
research, particularly a multimodal approach where the language, image and symbolism are taken 
into account, offers much potential for understanding the nature of mathematics, its functions and 
organisation, and the associated problems for teaching and learning mathematics.  
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TRACES OF ORAL TEACHING IN EUCLID’S 
ELEMENTS—DIAGRAMS, LABELS AND REFERENCES 

KEN SAITO 

Introduction 
Euclid's Elements were used as mathematics textbooks until the nineteenth century, and their 
influence is still visible in today's geometry textbooks. Their use as textbook in Europe began in 
mediaeval universities. We should rather say that the Elements constituted one of the major contents 
in the curriculum that enabled the emergence and development of universities. 
First, I shall show the diagrams in the Elements, which are transmitted to us through mediaeval 
manuscripts. Surprisingly, the diagrams in these sources are quite different from what we see in the 
printed editions available today. 
The geometry diagrams in the Elements we see today were practically invented by August, a 
gymnasium teacher who published the Greek Elements (August 1826-29) “for the use of beginners” 
(these words are contained in its title), without consulting any manuscript. His diagrams were 
copied in the critical edition of Johan Ludvig Heiberg (1854-1928), the great Danish scholar in the 
field of Greek mathematics. Heiberg published a new critical edition of the Greek Elements in the 
1880's—the first five volumes (Heiberg & Menge 1883-1916) of which are still the standard edition 
used by all the professional scholars of the field, and the source of all current translations. 
Thus, the diagrams of Euclid's geometry that we see in translations come not from manuscripts but 
from August’s edition 
On the other hand, the diagrams of arithmetic that occupy Books 7 to 9 in today's editions seem to 
be an invention of Heiberg himself, for I have been able to find neither manuscript nor printed 
edition before him with diagrams like those in his edition. Though he consulted several manuscripts 
for his edition of the text, he ignored the diagrams in the manuscript. 
In the second part of my lecture, I will examine some stylistic features of the Elements that are 
inconvenient to modern readers, and I will interpret them as traces of the style of mathematical 
teaching in ancient times that depended heavily on oral communication. 
Diagrams in Euclid’s Elements 
I begin with the diagrams. The study of diagrams in Greek mathematical texts is rather a new field. 
I can identify the work that called scholars’ attention to diagrams in Greek mathematics; it is The 
Shaping of Deduction in Greek mathematics of Reviel Netz (1999). This book, with several 
arguments with novel points of view, shows how manuscript diagrams are different from what we 
see in today's editions. 

The Tradition of Euclid’s Elements: from ancient times to printed editions 
Before examining the diagrams in various manuscripts and printed editions, a brief exposition on 
the history of the tradition of Euclid's Elements is in order. 
The Elements are a collection of fundamental theorems and problems of mathematics. For example, 
their Greek name, stoicheia, means the letters of alphabet, and, thus, elementary components. So, 
this is the title for a book containing basic propositions. The title was applicable to any work of 
such character, and the first Elements are said to have been compiled by Hippocrates of Chios, in 
the mid-fifth century. This Hippocrates is more or less contemporary to, but to be distinguished 
from, the famous founder of medicine, Hippocrates of Cos. 
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The most important feature of the Elements and Greek mathematical works in general is that the 
propositions are accompanied by demonstration. This was not the case in Egyptian and Babylonian 
mathematics. We may say that demonstration was an invention of the Greek people. 
Hippocrates's Elements have not come down to us, and the extant Elements are attributed to Euclid 
of Alexandria; however, about this person practically nothing is known. Many of you have probably 
heard that Euclid said that there is no royal road to geometry, when he was asked by King Ptolemy 
(more precisely, Ptolemy I, surnamed Soter) if there was an easier way to learn the Elements. King 
Ptolemy was one of the generals of Alexander the Great, and, after Alexander's death in 323 BCE, 
held Egypt and declared himself king in 305.  
However, Stobaeus attributes a similar conversation to Alexander the great and a mathematician 
named Menaechmus (Heath 1925, 1:1). Therefore, our anecdote on Euclid tells us only two things: 
that mathematics was not easy to learn, and that the person who invented this anecdote thought that 
Euclid was a contemporary of King Ptolemy. 
Proclus, a neoplatonist philosopher of the fifth century CE, in his commentary to Euclid's Book I, 
tries to determine Euclid's date. The anecdote of King Ptolemy and Euclid is one of the sources he 
cites to this purpose. This suggests that he did not have reliable material concerning Euclid's 
lifetime. In consequence, we have practically no hope of knowing more about Euclid's date, life and 
personality. 
You may have also heard that Euclid may have been a name of a group of mathematicians. This is 
the conjecture of a French scholar, Jean Itard (1961, 11); in the preface of his book on Euclid’s 
arithmetic, after pointing out that there is too much variety of style in the thirteen books of Euclid’s 
Elements for it to be the work of a single mathematician, he reasonably suggested that the works of 
his disciples may be included. This is quite possible, for it was common in ancient Greece that 
people of a school attributed their works to the founder1. For example, many medical works come 
down to us with the name of Hippocrates, and it is not always easy to distinguish the genuine and 
spurious ones. 
However, Itard added the gratuitous conjecture that it is also possible that the mathematician Euclid 
did not exist, and it was a name of a group. Yet, no evidence suggests that there was any group in 
ancient Greece, which published their results in the name of an imaginary person. Itard published 
his book on Euclid's arithmetic in 1961 in the heyday of Bourbaki’s activities, so this conjecture is 
completely unfounded. We should say that Itard has simply projected the Bourbaki of his age into 
antiquity, without good foundation. Unfortunately, the specter of “Euclid as a group” survives even 
today, and it is still sometimes heard. To make such a gratuitous comment is easy, and it is hard to 
eliminate it, if once diffused. Please do not diffuse it. 
As Itard has correctly pointed out, the contents of the Elements are not uniform. Until the seventies 
of the twentieth century, scholars were eager to find traces of older mathematics in the Elements. 
Today, we scholars recognize that the heterogeneous character of the Elements is rather due to later 
intervention2. 
Indeed, being the most basic work of Greek mathematics read and studied by everyone, the 
Elements have many traces of later intervention. We know, thanks to various pieces of evidence in 
extant documents, that Heron (1st century CE) and Theon of Alexandria (4th century CE) edited the 
Elements, and that certain propositions or arguments can be attributed to them. However, many of 
the apparent later interventions that we recognize in the text by some particular word or style cannot 
be attributed to someone whose name is known. 

                                                                            
1 However, we have practically no reliable documents about Euclid’s disciples and his “school”, and the 
heterogeneity of the different books of the Elements may as well be due to other factors. 
2 Knorr (1975) can be seen as the last example of the older approach (the author himself changed his research 
style after it), and the recent approach is best illustrated in Vitrac (2012). 
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Manuscripts and Printed editions 
The oldest extant Greek manuscript goes back to ninth century; and the six manuscripts (in some 
books more) used in Heiberg’s critical editions were copied by the twelfth century. 
The traditions in other languages are also important. Western Europe knew the Elements in the 
twelfth century through Latin translations made from Arabic translations. Then, Campanus of 
Novara in thirteenth century made a heavily edited and commented on Latin edition, which had 
great success in universities and enjoyed wide circulation, before the invention of printing in the 

fiftieth century—it was this version that appeared as the first printed edition of the Elements 
(Ratdolt 1482)3. 
In 1505, Zamberti published the Latin Elements translated directly from Greek. Then, the first 
Greek edition, editio princeps, was published together with Proclus’ commentary (Grynaeus 1533). 
Commandino's Latin version with accurate translation and adequate comments had great influence 
(Commandino 1572). 
Though there are hundreds of editions of the Elements, there are only five editions of the whole text 
in Greek to date; the second Greek edition was by Gregory (1703), and the third by Peyrard 
(1814-18). Peyrard had the chance to use an important Vatican manuscript, now named P after him, 
brought from Rome to Paris by the scholars in Napoleon's expedition. 
We have already briefly mentioned the fourth Greek edition (August 1826-29). Though the 
diagrams in the Elements had been modified in previous editions, August made drastic and 
thoroughgoing changes to the diagrams. It seems that he had pedagogical intention and tried to 
make the diagrams as general as possible. We will soon see what changes were made. 
Heiberg, the editor of today’s standard version, traveled very much for this work. In 1881, he 
visited Rome to consult the Vatican manuscript, and in Florence he compared the manuscript 
preserved in the Laurenziana library with that of the Archiginnasio library in Bologna (apparently 
sent to Florence upon his request). In the following year, we find him in Oxford, consulting the 
manuscript of the Bodleian library. The manuscripts of Paris and Vienna (Heiberg and Menge 
1883-1916, VIII-IX) (Heiberg and Stamatis 1969-1977, VIII-IX) were sent to Copenhagen, where 
he lived (interlibrary loans of manuscripts were possible at that time). Whatever the case, it seems 
that he loved traveling; I have found his signatures in the registers of the readers of manuscripts at 
the Biblioteca Marciana in Venice (just in front of Basilica di San Marco). The last of Heiberg’s 
signatures was dated August 1927, only some months before his death in January 1928. 
However, all this meticulous work of consulting manuscripts was directed to the text only, and no 
attention was paid to the diagrams in the manuscripts except in a few cases. Heiberg simply copied 
the diagrams of August’s edition, though he knew very well that they were alien to those in the 
manuscripts. We do not know why Heiberg was completely indifferent to the diagrams. 

Peculiar features of manuscript diagrams 
Now let us examine the diagrams4. First, I show the diagram of proposition I.47, Pythagoras` 
theorem5. 
 

                                                                            
3 The manuscripts of Campanus’s version and this 1482 edition have been edited (Busard 2005). 
4 For a more detailed discussion of the diagrams in the Elements, see Saito (2006), Saito-Sidoli (2012), and 
Saito (2018). 
5 As the image of manuscript is not always convenient for study, for lines and labels are not always clear, I 
have used reproduced drawings like this one. For the reproduction of the drawing, the software DRaFT was 
used (http://www.greekmath.org/draft/draft_index.html). 
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Codex P                   Heiberg 
Fig. 1: Proposition I.47 (Pythagoras` Theorem) 

This is the image of a Vatican manuscript page, number 190, to which Heiberg gave the siglum `P' 
in Peyrard's honor (a siglum is the abbreviated name of each source in one or two letters, used in 
critical editions). 
Let us compare it with the diagram we are accustomed to seeing in today's editions. All of them 
come from Heiberg's Greek edition, which you see to the right of fig. 1. 
The difference is evident; the manuscript draws a rectangular triangle, but it is also an isosceles. 
Drawing diagrams, we are careful not to introduce specific conditions such as right angle or equal 
sides when they are not required in the proposition. In Pythagorean theorem, the triangle is 
rectangular, but not always isosceles, so that we avoid an isosceles triangle.  
The manuscripts often add specific conditions: they tend to draw an isosceles or equilateral triangle 
for a general triangle, and a rectangle or square for a parallelogram. I call this phenomenon 
``overspecification''. 
All the manuscripts Heiberg used have a diagram of I.47 similar to that of codex P. The only 
exception is the Bodleian manuscript, which shows an isosceles but not a rectangular triangle. 

 

Fig. 2: Proposition I.47 (codex B) 
The scribe seems to have drawn too big a square in the limited space for the diagram and 
constrained to compress the upper part. The scribes were not so much concerned about drawing 
accurate diagrams.6 I will return to this feature soon, but for the moment let us see the diagrams of 
the printed editions. 

                                                                            
6 The diagrams were often drawn by someone else after the text was copied, either in the margin or the blank 
space which the copyist had made for the diagram, by leaving a part or whole of a column without the text. 
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Ratdolt (1482)                 Grynaeus (1533) 
Fig. 3: Propositions I.47 in early printed editions. 

Fig. 3 (left) is the diagram in the first printed edition of the Elements of 1482, based on Campanus's 
version. It has two more oblique lines. All the older manuscripts have only two oblique lines on the 
left (and not two lines on the right), which are used to show the equality of the small square ΑΒΗΖ 
with the parallelogram (rectangle) ΒΛ, part of the big square on the hypothenuse. The text proves 
this equality and then says that, ΑΕ and ΒΚ being joined, it will be proved that the square ΑΓΚΘ is 
equal to the parallelogram ΓΛ. The diagram of the 1482 edition has visualized these lines, ΑΕ and 
ΒΚ mentioned in the text. Mathematically, this is not bad, but these two lines did not exist in the 
manuscript tradition. Then, in Grynaeus's Greek edition (fig. 3, right), published half a century later, 
the triangle is no longer isosceles, against the manuscript tradition. The manuscript he used may 
have had such a diagram. Anyway, all the subsequent editions have rectangular but not isosceles 
triangles. We show Commandino (1572) and Gregory (1703) in fig. 4. 

 

 
Commandino                       Gregory 

Fig. 4: Proposition I.47 
Let us see another example of overspecification in a manuscript diagram: proposition I.35 proves 
that parallelograms having the same base and between the same parallels are equal to each other.7 In 
manuscripts, one of the parallelograms is a rectangle or a square, and Heiberg's diagram, which is a 
copy of August’s, avoids a rectangle, for the parallelogram is not always rectangular (fig. 5). 
 

                                                                            
7 When Euclid says that two figures are equal, he means that their areas are equal. 
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Codex F                                 Heiberg 
Fig. 5: Proposition I.35 

Now, I go on to the second feature, which I call “metrical inaccuracy”. I show the diagram of 
proposition I.44 (fig. 6). This is not a theorem, but a problem: given a line ΑΒ, an area Γ, and an 
angle Δ, it is required to construct a parallelogram ΑΒΜΛ, having one side ΑΒ, with an area equal 
to Γ, and one angle equal to Δ. 
However, it is difficult to imagine from the manuscript diagram that the angle of the parallelogram 
ΑΒΜΛ is equal to the angle Δ, and that its area is equal to the given area Γ. Heiberg’s diagram is 
accurate in this respect. 

  

Codex P                             Heiberg 
Fig. 6: Proposition I.44 

Generally, it is easy to find diagrams in which metrical relations such as equality or ratio of lines, 
areas and angles, are not correctly represented. It was the text that showed such metrical relations, 
not the diagram. 
Let us examine the third feature of manuscript diagrams. In a proposition which uses proof by 
contradiction, it is impossible to draw a correct diagram, for the assumption in such a proposition 
contains something impossible, so that the diagram necessarily ignores some of the conditions. 
In proposition III.13, Euclid shows that two circles cannot touch each other at two points, whether 
internally or externally. For the proof of the impossibility of touching at two points externally, the 
diagram draws two circles: ΑΒΔΓ and ΑΚΓΛ (fig. 7)8.  
 

  

Codex P                          Heiberg 

                                                                            
8 Point Λ is never mentioned in the text. 
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Fig. 7: Proposition III.13 
In the manuscript diagram, the second circle is a lunula, not a circle. But this is necessary, and 
Heiberg’s diagram, which draws two circles intersecting each other at points Α and Γ, does not 
represent the assumption of the proposition, causing difficulty in understanding Euclid’s arguments. 
Indeed, the proof is thus, 

(III.13 part of the proof) Let two circles touch each other at two points Α and Γ, externally. 
Therefore, the chord ΑΓ falls within each circle, for this is demonstrated (III.2).  

Then the text says: 
But it fell within the circle ΑΒΓΔ and outside ΑΚΓ. 

What does he mean? This is understood as the definition of touching circles. Touching circles are 
those, which meet but do not cut each other (III. Def. 3). Therefore, if the line ΑΓ falls inside the 
first circle, it must fall outside the second circle, because these circles touch each other externally. 
Heiberg’s diagram (that is, August's diagram) does not represent this situation. There are two circles 
cutting each other. This contradicts the definition of touching circles, and Euclid's argument 
becomes difficult to understand. Consequently, it is important not to avoid drawing an obviously 
impossible diagram in a proof by contradiction. 
Now we have come to the last of the four features of manuscript diagrams. I call it “one diagram for 
two cases”. Let us look at the diagram of a case of the chord theorem (III.36), at the end of book III. 
If point Δ is taken outside the circle ΑΒΓ (fig. 8), and from point Δ a cutting line ΔΓΑ and a tangent 
ΔΒ are drawn, then the rectangle contained by two segments ΑΔ and ΔΓ of the cutting line is equal 
to the square on the tangent ΔΒ. This relation is often expressed as an algebraic equality: 

 
However, Euclid never mentions any product nor second power of a line, so I use the following 
notation. 

 
The proof first treats the case in which ΔΑ goes through the center Ζ. Then, the more general case 
is treated in which ΔΑ is not through the center. 

   

Heiberg                                Codex P 
Fig. 8: Proposition III.36 

Heiberg gives two separate diagrams (fig. 8, left), but in mediaeval manuscripts we see a strange 
diagram. The only possible interpretation is that we are supposed to assume that Z is the center of 
the circle in the first case, and that in the second case, we continue to use the same diagram, 
assuming that Ε is now the center, and that ΕΖ is perpendicular to the chord ΑΓ drawn from the 
center Ε. The indifference to metrical accuracy in the manuscripts makes such a flexible double use 
of the diagram possible9. 
Here, I sum up the features of the diagrams of plane geometry in the Elements. (1) 
Overspecification: the angles tend to be right angles, and the triangles tend to be isosceles, or even 
equilateral. (2) However, metrical accuracy is not so important, and diagrams are not expected to 
                                                                            
9 I have to add that the treatment of the first special case of ΑΓ through the center in the text may be a later 
addition, for the letter Ζ is assigned before the appearance of the letter Ε. This is against Euclid's way of 
assigning labels, which is always in alphabetical order, as we shall see later. But as this is present in all the 
extant manuscripts, the addition must have been done quite early, certainly before Theon. 
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represent the equality of lines, angles, and areas. (3) In proof by contradiction, an obviously 
impossible diagram was drawn without hesitation. (4) Sometimes one diagram can serve two 
different cases. 
The features of diagrams we have seen are strange to us, but they are not so strange nor 
embarrassing if mathematics was not learned from a written source but taught by a teacher. In other 
words, the text and the diagram of the Elements were not written for readers in distant places who 
would learn them without a teacher; the diagrams were probably drawn for those who already knew 
the proposition, and mathematics was not something to be learned from a textbook. In the following 
part of this article, I develop this idea and try to show that we can find traces of a prevalently oral 
teaching of mathematics in the text of the Elements. 
Before closing the examination of the diagrams of geometric books of the Elements, I add two brief 
arguments. First, I show evidence that Heiberg copied the diagrams of August’s edition. Then, I 
show the basic characteristic of the diagrams of arithmetic that is lost in the printed editions of 
today. There is decisive evidence that Heiberg copied August’s diagram. 
 

 

 

Heiberg                             August 
Fig. 9: Proposition VI.11 in Heiberg’s and August’s editions 

Fig. 9 (left) is the diagram of proposition VI.11 in Heiberg's edition. There appear the labels Α, Β, 
and Γ twice. The three horizontal lines Α, Β, and Γ on the right of the triangle do not belong to this 
proposition but to the following proposition VI.12. If we look at the diagrams of August's edition 
(fig. 9, right), we see why this has happened. In this edition, all the diagrams are printed together at 
the end of the volume, and the diagrams of proposition 11 and 12 are placed one beside the other, 
and it is evident that the three horizontal lines Α, Β, and Γ of proposition 12 have been wrongly 
attached to proposition 11 in Heiberg’s edition.  
This is decisive evidence that Heiberg copied the diagrams of August. Probably, Heiberg sent the 
diagram pages of August’s edition to the printer and commissioned the task of dividing the page 
into single diagrams and arranging them. 
Second, I argue that the features of the diagrams found in extant manuscripts go back to ancient 
times. All the diagrams we have examined are found in mediaeval manuscripts, of which the oldest 
is dated to the ninth century. It is therefore natural to ask whether their features come from ancient 
diagrams (if not those of Euclid himself), or if we see mediaeval degradation. A recently published 
papyrus fragment, Oxyrhynchus 5299, suggests an ancient origin for mediaeval diagrams, for it has 
peculiar features common to mediaeval diagrams10. I show only one example (fig. 10). In the 
diagram of proposition I.22, which constructs a triangle from three given lines—the three given 
lines appear as parallel and equal vertical lines in this papyrus manuscript, as well as in two 
ninth-century manuscripts, codex P and codex B (though the latter shows that the diagrams were 

                                                                            
10 Cairncross and Henry (2015). The diagram of proposition I.22 in the papyrus (fig. 10, left) is copied from 
this article. 
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not very faithfully copied). This can hardly happen by chance, so that we may suppose the 
mediaeval diagrams are copied from ancient ones. 
 

 
 

 
 Oxyrhunchus 5299                                Codex P                                           Codex B 

Fig. 10: Diagram of proposition I.22 
 

Diagrams in arithmetic 
A brief mention of the arithmetic diagrams is in order. I recently found a situation different from, 
but no less interesting than, that in geometrical books; Heiberg invented all the diagrams for 
arithmetic, but the diagrams he invented were a disaster. 
As a typical example, let us look at proposition VIII.2. This is a problem of finding numbers in 
continuous proportion in the given ratio. The ratio given is that of Α to Β (both are integers, for this 
is arithmetic). Then, Euclid makes Α square, Α multiplied to Β, and Β square, which are named Γ, 
Δ, and Ε, respectively. Then Α multiplies each of Γ, Δ, and Ε, making Ζ, Η, and Θ, respectively, 
and Β multiplying Ε makes Κ. 

  

Fig. 11: Proposition VIII.2 (codex P) 
 

 
 

Grynaeus (1533)                    Commandino (1572) 
Fig. 12: Proposition VIII.2 in early editions 
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Gregory                                    August 
Fig. 13: Exemplary numbers replacing the diagrams in Proposition VIII.2 (shadows added) 

We would represent the three numbers Γ, Δ, and Ε by , and the four numbers from Ζ 
to Κ by . 
But Euclid did not have such algebraic symbols, and simply assigned new letters every time a new 
number was introduced. This makes the reading very difficult, for you are supposed to remember 
what each of the nine symbols from Α to Κ are. For example, you must remember that Η is the 
product of Α and Δ, and Δ, in its turn, is the product of Α and Β, to understand the proof. Thus, the 
arrangement of the lines in the diagram is very helpful for readers. 
The manuscripts are also accompanied by numbers which serve as examples of the truth of the 
proposition. They are written either in Greek numerals or Arabic numerals (more precisely, eastern 
Arabic numerals, those used today with Arabic scripts). The numerals are Greek in the diagrams of 
older manuscripts, including codex P, whose reproduction is shown in fig. 11 above. I have 
reproduced the numerals in the right figure in (western) Arabic numerals. 
We can say that the numbers in the diagrams did not exist in the original, because (1) these 
particular numbers never appear in the text of the Elements, (2) the numbers in diagrams are often 
written by a different hand from the main text, and (3) sometimes numbers are different from one 
manuscript to another. 
Let us now see how these diagrams have changed in printed editions. The arrangement of lines was 
discarded in early editions, while exemplar numbers were retained (fig. 12). 
Then, Gregory decided to do away with lines, while keeping the arrangement of lines as that of 
exemplar numbers (fig. 13), and August followed Gregory11. 
However, Heiberg decided to revive the lines, abolishing the exemplary numbers. Since exemplary 
particular numbers did not exist in the original in all probability, this decision was right. Heiberg 
did not use the diagrams in the manuscripts, but made new diagrams himself. I say “himself”, for I 
have not been able to find any diagrams like his before his edition (fig. 14).  

                                                                            
11In Book VII, Gregory represents numbers by dotted lines (the number of dots represents the exemplar value 
of the truth of the proposition), and from Book VIII, he adopts the representation without lines, which 
August uses from Book VII.  
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Fig. 14: Proposition VIII.2 (Heiberg) 
This was a tragedy; Heiberg's diagram suggests nothing about the relationship between numbers. 
The merit of the manuscript diagrams is lost. The text is still much more readable with exemplary 
numbers provided in earlier editions. Since Heiberg, we have been reading Euclid's arithmetic with 
invented diagrams, which do not help us at all—the manuscript diagrams should be restored12.  
 
The Traces of Oral Teaching in the Text of the Elements 

Particular and inconvenient features of the text of the Elements 
I now move on to the other topic, the mathematical teaching style of which I believe we can catch a 
glimpse from the text of the Elements. Generally speaking, it is obvious that oral communication 
was much more important in ancient times than it is today. But how can we prove it in the field of 
mathematical teaching from the written documents we have? 
I point out four particular features of the text of the Elements which I think are traces of the 
mathematical teaching style of ancient Greece. 
First, although the Elements develop logical deductions using previous propositions in subsequent 
ones, proposition numbers are never used in the text of the Elements. Euclid never says something 
like “because of proposition III.37''. Therefore, we should assume that the proposition number did 
not exist in Euclid's time, and that those in our manuscripts were added later. 
Second, the diagram of each proposition is accompanied by labels, as we have seen. Labels or 
letters, Α, Β, Γ, etc., are assigned in alphabetical order, at the first appearance in the text. There is 
nothing wrong with this manner of assignment within one proposition. This means, however, that 
the assignment of labels may be different between propositions, even though they may be very 
similar in content. 
For example, proposition III.37 (fig. 15) is the converse of III.36 (fig. 8 above). III.36 shows, as we 
have seen above, that if ΔΒ is tangent, for any line ΔΓΑ cutting the circle, the equality 

 
 

Fig. 15: Proposition III.37 (codex P) 

                                                                            
12 In the new Japanese translation of the Elements (Saito 2015), for which I worked with my colleagues, both 
Heiberg’s diagrams and reproduced manuscript diagrams appear. 
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holds. III.37 says that if this equality between rectangle and square holds, then the line ΔΒ is 
tangent to the circle at the point B. However, the assignment of labels is slightly different; while the 
first four points Α, Β, Γ, Δ correspond to each other in two propositions, the points Ε and Ζ have 
different roles in these two propositions. E is the center of the circle in III.36, while it is Z in III.37. 
This is confusing to modern readers. 
Why were the labels assigned in such an inconsistent way? The answer should be that somehow this 
was not inconsistent, and that it was not felt inconvenient to students in Euclid's time. But how was 
that possible? 
For the moment, I go on to the next feature. The labels I have just mentioned are given to the 
points; lines and angles are indicated by two or three labels, for example, line ΔΓΑ. However, the 
order of the points is not fixed. In proposition III.37, the angle of the tangent at point Ε appears first 
as ΖΕΔ, then, later in the same proposition, the same angle is called angle ΔΕΖ. Such a change in 
the order of points happens quite often. Though there is no risk of misunderstanding, this is not very 
convenient for a reader of written text. 
Finally, I explain the fourth, last feature. Every proposition of Euclid's Elements begins with a 
so-called “protasis'', or general enunciation, where the proposition is stated without diagram and 
without the names of points, but in a general way13. For example, the protasis of proposition III.13 
is thus: “a circle does not touch a circle at more than one point, neither internally nor externally''. 
This is fine. However, the protasis can become very long and complicated, so that no one reading it 
for the first time can understand it. As an example, let us read the protasis of Proposition III.37. 

(III.37 protasis) If a point be taken outside a circle and from the point two straight lines fall on 
the circle, and if one of them cut the circle, and the other fall on it, and if further the rectangle 
contained by the whole of the straight line which cuts the circle and the straight line intercepted 
on it outside between the point and the convex circumference be equal to the square on the 
straight line which falls on the circle, the straight line which falls on it will touch the circle. 

This protasis is incomprehensible, at least for someone who reads it for the first time. Indeed, when 
we read Euclid's Elements, we often skip the protasis and begin with the ekthesis, or setting out, 
which follows the protasis. 

(III.37 ekthesis) For let a point Δ be taken outside the circle ΑΒΓ; from Δ let the two straight 
lines ΔΓΑ, ΔΒ fall on the circle ΑΓΒ; let ΔΓΑ cut the circle and ΔΒ fall on it; and let the 
rectangle ΑΔ, ΔΓ be equal to the square on ΔΒ (fig. 15). 

Then, Euclid restates the conclusion with the names of points. 
I say that ΔΒ touches the circle ΑΒΓ. 

This affirmation is called the diorismos, the English translation of this name would be specification. 
Some constructions follow if necessary, then comes the demonstration. 
Now, if the ekthesis, or setting out, with diagram and names of points, is much easier to understand, 
why does the text of the Elements always preserve the protasis, which is often skipped by modern 
readers. Moreover, the protasis is repeated at the end of each proposition, as the sumperasma, or 
conclusion. Most propositions of the Elements repeat the protasis almost literally at the end, as a 
conclusion, adding only one word ‘ara’, i.e., therefore. So the protasis occupies considerable space 
on precious manuscript parchment. 

An explanation for particular features of the Elements: traces of oral teaching and 
communication of mathematics 
Now, I respond to all of the four questions. We should first note that all the inconveniences are for 
those who read the written text. Then, we may hope to find some explanation related to our 
reasonable assumption that the ancient teachers and students did not use written textbooks. 

                                                                            
13 For the division of a proposition into six parts found in Proclus, see (Mueller 1981, 11). 
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Let us again try to imagine how mathematics was taught in ancient times; did students possess some 
written textbook? Obviously not. Printing did not exist, and it is highly improbable that a student 
had some hand copy of the Elements at the beginning of learning. Then, how did the teaching 
proceed? There was no blackboard. A probable assumption is that the teacher drew diagrams on 
sand (sometimes on papyrus), and indicated the points and other geometrical objects by finger, 
explaining the proposition and its demonstration. 
As a result, references by proposition number would have made no sense. Even if one had had the 
written text, the text was written on papyrus role, so that it would not have been so easy to open the 
place of a proposition, especially when it is one of the last propositions of one volume. To find it, 
you would have had to open and extend almost the whole of one papyrus role. Therefore, any 
reference to previous propositions must have had another form, which I will explain later. 
The teacher probably drew diagrams and indicated their points in the presence of students. And the 
diagram was naturally erased when the next proposition was treated. The assignment of labels to 
points in the diagram had to be done anew, and there was no inconvenience, even if the assignment 
was different from that of preceding proposition, for in front of the teacher and students, there was 
always only one diagram14. 
We have a textbook in codex which consists of hundreds of papers, one sheet put over another and 
bound up forming a block—this is the etymology of the word codex. So, we can look up the 
diagram of another proposition, and the inconsistency of label assignment leaps to the eye. But it 
was not the case in ancient times.  
The assumption that the diagram was drawn in front of disciples when a proposition is taught can 
explain the third particular feature, the inconsistency in indicating lines and angles by two or more 
labels. As the teacher speaks, indicating the labeled points, a line may as well be called BA, even if 
it was called AB before15. 
Now, I respond to the last point, the long and incomprehensive protasis. My suggestion is that the 
protasis was the format for memory. I said that the diagram of a proposition was erased when next 
proposition had to be treated, and the reference to a previous proposition was not done by 
proposition numbers. Then, there must have been some way of memorizing and referring to the 
propositions. I argue that this is exactly the role of the protasis. 
Though some protases are long and difficult to understand, it is possible to memorize them after 
one has learned and understood the proposition. Let us go back to the protasis of III.37 and look at 
it. Imagine that you have already learned the proposition, know what it purports, and have in your 
memory the diagram like fig. 14 (the line ΒΕ is not necessary for it serves only for the 
demonstration)—then, this protasis is quite clear. 
Moreover, I suggest that this is a quotable format, and was indeed quoted, not literally, but in 
accordance with the context. Let us see how the quotation is done. I pick up Proposition IV.10, 
which makes an auxiliary construction for the construction of a regular pentagon. In fact, it 
constructs an isosceles triangle whose angles at the base are double of the angle at the vertex (the 
size of three angles are 36, 72, 72 degrees). With this triangle, one has three of the five vertices of 
the regular pentagon. 

                                                                            
14 Thus the labels are like local variables in computer programming language. Local variables have their 
“scope” where they are valid, and outside their scope, a variable has another meaning (or has no meaning). 
The scope of a label is the proposition in which it is assigned. 
15 As for such switching of names, Netz (1999, 74ff.) develops illuminating arguments. 
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Codex P                      Codex P (revised) 
Fig. 16: Proposition IV.1016 

Euclid starts with any line ΑΒ (fig. 16), and after some construction, he has point Γ on ΑΒ, and 
another point Δ, with the particular condition that the rectangle contained by ΑΒ, ΒΓ is equal to the 
square constructed on ΒΔ17.This is exactly the premise of III.37, and now Euclid wants to show, 
using III.37, that the straight line ΒΔ touches the circle ΑΓΔ. 
Euclid could not say “because of proposition III.37” (the first peculiar feature of the Elements: no 
use of a proposition number). Instead he says the following. 

(IV.10 part of proof) Since point Β has been taken outside the circle ΑΓΔ, and from Β the two 
straight lines ΒΑ, ΒΔ have fallen on the circle ΑΓΔ, 

We see at once that this can be obtained by transforming the protasis of III.37: 
(III.37 beginning of protasis) If a point be taken outside a circle and from the point two straight 
lines fall on the circle, and if one of them cut the circle, and the other fall on it, 

Indeed, replacing the `if’ that introduces a conditional sentence by `since’, for the points are already 
taken in IV.10, and replacing the references to points and lines in the protasis of III.37 by their 
labels in IV.10—“a point outside a circle” by Β, “the circle” by ΑΓΔ, and “the two straight lines 
falling on the circle” by BA and ΒΔ—one can obtain the text of IV.10. 
Here, I show this and the following parts of the protasis of III.37, and the demonstration of IV.10, 
giving the same numbers to the corresponding phrases. 

(III.37 protasis) 
(1) If a point be taken outside a circle and from the point two straight lines fall on the circle, 

(2) and if one of them cut the circle, and the other fall on it, 
(3) and if further the rectangle contained by the whole of the straight line which cuts the circle 
and the straight line intercepted on it outside between the point and the convex circumference 
(4) be equal to the square on the straight line which falls on the circle, 

(5) the straight line which falls on it will touch the circle. 
 

 (IV.10, the argument where III.37 is applied) 
(1) Since a point Β has been taken outside the circle ΑΓΔ, and from Β the two straight lines ΒΑ, 
ΒΔ have fallen on the circle ΑΓΔ, 
(2) and one of them cuts it, while the other falls on it, 

                                                                            
16 I have omitted from the diagram the circle with center Α passing through Β and Δ, with which our 
argument is not concerned. The line ΒΔ cuts the circle ΑΓΔ in the diagram of codex P, though it must be a 
tangent. I have provided a revised diagram, too. 
17 There is another condition that ΒΔ is equal to ΑΓ, but this is not used in the part of the demonstration we 
are interested in here. 
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(3) and the rectangle ΑΒ, ΒΓ 

(4) is equal to the square on ΒΔ, 
(5) therefore ΒΔ touches the circle ΑΓΔ. 

This comparison shows how protasis of a proposition in memory was used when that proposition 
was applied later. One remembers (or recites) the protasis, and replace the references to geometrical 
objects (points, lines, circles etc.) in a general form with the labels of the objects one has in the 
diagram on which one is working. 
I think that this was the role of the protasis, which is embarrassing for us; Protasis was a format for 
memory and application of a proposition. Therefore, it was the most important part of the 
proposition, and we understand why the text of Elements does not omit it in spite of its difficulty (or 
unreadableness) to those who first read it, and the space it occupies. 
I hope to have shown the traces of practice—prevalently oral—of ancient mathematics in the 
written text we possess. The style of the text of the Elements was not invented for transmitting 
mathematical ideas to a person living far away, and writing text was not probably the main task of a 
mathematician. 
To conclude, I refer to a passage in the introduction of Apollonius' Conics to support this view. 
Apollonius explains the motive to write this gigantic and difficult work of 8 books, of which we 
possess Greek text of the first four and Arabic translation of first seven. The last book was lost. 
According to Apollonius, Naucrates, a friend of his, visited him in Alexandria, and when he left, he 
wanted to carry Apollonius' theory of Conics with him, so Apollonius wrote the Conics in a hurry. 
In the preface of the text we possess, Apollonius says that he has revised the first version, and now 
he is sending the revised version.  
From this preface, we can gather that even for Apollonius, who was active one century after Euclid, 
to write down a work did not have priority in his activities. We should be grateful to his friend 
Naucrates who gave the occasion to write down the Conics, which have come down to us. 
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SYMPOSIUM A: TEXTBOOK USE BY TEACHERS AND 
STUDENTS – RESULTS AND METHODS 

SEBASTIAN REZAT and RUDOLF STRÄßER 
Teachers and students are regarded to be the main users of textbooks. Textbooks offer opportunities 
to learn (for both up students and teachers), which on the one hand have to be understood and taken 
by teachers and on the other hand have to be implemented in classrooms. In most recent studies the 
textbook is regarded to be the mediating artefact, which links the goals, the knowledge and the 
beliefs of teachers and students (Brown 2009; Remillard 2005; Rezat & Sträßer 2012). Besides 
these teacher- and student-related variables, textbook use is also influenced by additional social and 
cultural influences, such as institutions, especially the school, the influence of peers, family and 
tutors as well as the one from those interested in mathematics education in general (the “noosphere” 
sensu Chevallard) and finally the influence of conventions, norms and the public image of 
mathematics (Rezat & Sträßer 2012). Usually, the textbook is not the only artefact that teachers and 
students use for teaching and learning, but one resource among several others (Gueudet & Trouche 
2009).  
The aim of the symposium was to collect research on the use of mathematics textbooks in order to 
develop a deeper understanding of textbook use by teachers and students and to give an outline of 
the state of the art. Furthermore, the symposium aimed at discussing three methodological 
questions: 

1) What are appropriate methods to investigate teachers’ and/or students’ use of mathematics 
textbooks? 

2) What about additional challenges and potentials when analysing the use of interactive/digital 
textbooks? What are appropriate ways to investigate interactions and interrelations of 
students’ and teachers’ use of mathematics textbooks? 

Among the contributions five were selected to be presented at the symposium because of their 
originality and contribution to the field: 

1) Margot Berger: Reading mathematics textbooks: different reading styles; 
2) Kristina Reiss, Stefan Hoch, Frank Reinhold, Bernhard Werner, Jürgen Richter-Gebert: 

Analyzing classroom work: students’ use of electronic textbooks 
3) Vilma Mesa, Angeliki Mali, and the UTMOST Team: Uses of dynamic textbooks in 

undergraduate mathematics classrooms; 
4) Elena, Naftaliev: Pedagogical functions of interactive texts; 
5) Shai Olsher, Michal Yerushalmy, and Jason Cooper: Developing categories of curricular 

metadata: lenses for studying relationships between teachers and digital textbooks 
Two page summaries of these presentations follow this introduction and general overview of the 
Symposium. The references of all contributions are collected at the end of this presentation of the 
symposium. 



 Rezat, and Sträßer 

  68 

Before we summarize the contributions of the presentations in the symposium to questions 1 – 3, 
we will give an overview in terms of (a) the relation between research on traditional and digital 
textbooks, (b) the user in focus, and (c) the different meanings of “use”. 
Looking at the contributions to this symposium, there seems to be a growing interest in the use of 
digital textbooks compared to the interest in the use of traditional print textbooks. Only one paper in 
this symposium focuses on traditional print textbooks while the other four focus on digital 
textbooks or parts of them. However, it appears that the variety among digital textbooks seems to be 
much bigger than among their traditional predecessors. Without taking the technical and 
technological differences into account, the variations seem to mainly relate to the amount and 
nature of possibilities of interaction and collaboration.  
While research related to traditional print textbooks mainly focuses on teachers as the main users 
the contributions to this symposium might indicate that the student as a user seems to attract more 
attention in research related to digital textbooks: Three papers focus solely on the student, one 
focuses solely on the teacher, and one takes both the teachers’ and students’ use into account. 
Depending on the particular activity the textbook is involved in, the very meaning of ‘use’, might 
differ. This is exemplified by the different presentations in the symposium. ‘Use’ might refer to the 
actual reading of the content and to the question how readers actually make use of the contents of a 
text. Berger differentiates five different “reading styles” that vary in terms of extent of reading, 
focus, connections made, and the quality of solutions to exercises. Thus, reading styles vary from 
“close reading with strong connections” through “scanning” and “skimming” to “avoiding”. ‘Use’ 
might also refer to the understanding that users develop of the opportunities to learn provided by 
textbooks and which pedagogical potential they see in these. Naftaliev also aims at understanding 
the activity of students interacting with texts. However, she focuses on one particular representation 
within interactive textbooks, namely interactive diagrams. She finds that interactive diagrams with 
different organizational functions have different effects on the activity of the students with these 
diagrams and thus on students’ learning. Reiss, Hoch, Reinhold, Werner, and Richter-Gebert also 
analyse students use of interactive diagrams. They analyse students’ solution strategies related to 
different visualizations of fractions (bar, circle) and draw inferences regarding affordances and 
constraints of the two visualizations. They also hint at the possibility to draw inferences from 
students’ solution strategies regarding their conceptual understanding.  
Olsher, Yerushalmy, and Cooper, as well as Mali and Mesa, focus on teachers as the user. Olsher et 
al. analyse the didactical categories that teachers apply in order to make sense of opportunities to 
learn in textbooks in terms of their correlation with the authors’ intentions. In contrast to Berger, 
who aims to understand the process of reading and thus the interaction of the reader and the text 
itself, Olsher et al. focus on the understanding and interpretation of the opportunities to learn by the 
use. Accordingly, they term the set of categories that they get from the teachers’ coding activities 
“didactic metadata”. While Naftaliev focuses on interactive diagrams as one particular aspect of 
interactive texts, Mali and Mesa aim at understanding the interaction between teachers and a whole 
set of resources in terms of instrumental genesis.  
In terms of appropriate methods in order to analyse the use of textbooks (question 1), case studies 
within the qualitative research paradigm seem to be the preferred method. Only the study by Reiss 
et al. presents a mixed methods design. This might have different reasons: On the one hand, the 
understanding of the relevant factors and mechanisms related to the use of textbooks is still in phase 
of exploration. Generalizable patterns that describe the interplay of different factors and related 
consequences on textbook use are difficult to unveil. On the other hand, textbook use seems to be 
influenced by many and very individual factors and therefore is only adequately accessible, when 
the methodology takes this individuality into account.  
All contributions to this symposium have in common that they understand ‘use’ as an interaction of 
artefact and user. Especially in terms of traditional textbooks the focus is on the user. However, the 
role of the artefact within the interaction is not always clear. For example, Berger analyses reading 
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styles, which seem to be a characteristic of the user. It is not clear how the readings styles are 
affected by properties (affordances and constraints) of the artefact. It seems to be a particular 
potential of digital artefacts (question 2) that the role of the artefact within the interaction comes 
more to the fore related to digital artefacts. For example, Naftaliev suggests that characteristics of 
the activity with interactive diagrams are dependent on their organizational function. At this stage, 
it seems as if the understanding of the particular contribution of each actor – user and artefact – 
within the activity is more like to develop if the artefact at hand is very specific. This seems to be 
the case in the analysis of interactions of students with visualizations of fractions by Reiss et al. as 
well as the analysis of the interaction of students with interactive diagrams by Naftaliev. As soon as 
the artefact is a whole textbook or even a set of resources the insights seem to be much more 
general and not specifically linked to the properties (affordances and constraints) of the artefact.  
From a methodological perspective, there might be two reasons why the role of the artefact within 
the activity is more apparent in terms of digital artefacts: First, interactive digital artefacts react 
upon actions of the user and thus change within the interaction. This is the very meaning of 
interaction. The analysis of mutual related actions of artefact and user seems to be more easily 
related to properties (affordances and constraints) of the artefact than in the case of analogous 
artefacts, in which the artefact appears to be mostly unchanged in the interaction. Second, digital 
artefacts facilitate the collection of user data. While with analogous artefacts the data that is 
collected – mainly video recordings and interviews – stems from the user, digital artefacts allow for 
the collection of user related data in combination with data on the changes of the artefact.  
Among the contributions to the symposium, the UTMOST project (Mesa et al.) is the only one that 
takes teachers’ and students’ use of a digital textbook into account. Therefore, it is the only one 
capable to make a contribution to question 3. However, at this stage only data on teachers’ use was 
analysed.  
The analysis of interactions between teachers’ and students’ use of textbooks still seems to be a 
challenge in the field. In the end, it is neither the teacher’s nor the student’s use of textbooks by 
itself, but it is the interaction between both that is crucial for the quality of the learning situation.  
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READING MATHEMATICS TEXTBOOKS: DIFFERENT 
READING STYLES 

MARGOT BERGER 

Introduction 
I develop a broad typology for categorising the ways in which students read a section of a chapter in 
a mathematics textbook. The categories of the typology derive from those found in informal 
literature around academic reading skills, such as skimming, scanning and intensive reading (BBC 
2011). These categories are inductively refined and elaborated to the mathematics reading context 
using observations and video transcripts of five specially chosen students studying out loud from a 
prescribed mathematics textbook.  
Research on the way in which learners read mathematics textbooks is scant. Exceptions to this are 
Rezat (for example, 2013). Berger (2016) developed a framework, specific to mathematics 
discourse, for exploring the relationship between enacted discourse (the student’s way of reading 
the text) and the written discourse (the text). I develop the latter framework so as to categorise 
different approaches to reading mathematics by different learners. Reading is understood as a 
transaction (enacted curriculum) between text (written curriculum) and reader.  
Context 
The five students were enrolled in a self-study course for in-service or pre-service high school 
mathematics teachers at a South African university. These teachers are conceptualised as 
mathematics learners both within the course and within the research; this is because their prior 
knowledge of mathematics is often weak and not mathematically rigorous. In the pre-calculus 
course, students were expected to study (read the text, do worked examples, exercises, and so on) 
from the prescribed textbook (Sullivan 2012) prior to the lecture on their own. The precise sections 
for self-study were designated by the course designer (myself).  
Methodology 
Five students were chosen by the researcher (myself) as participants in the research. They were 
chosen according to my informal observations of their different learning styles in class. For the 
research study, these learners were individually video-taped while reading and studying out loud 
from a sub-chapter, ‘Properties of Logarithms’ (Sullivan 2012, pp. 296–304), as they would in 
preparation for class. They were also given a set of exercises at the back of this sub-chapter, as was 
the case for their weekly sessions. This sub-chapter addresses operations with logarithms and 
change of bases. It was chosen because it focuses on mathematical ideas with which the students are 
familiar, but from a more advanced perspective. For example, they know procedures for working 
with logarithms but are not familiar with proofs of theorems around logarithms.  
Aside from the transcripts of each video session, the interviewer (myself) wrote a set of notes 
during each video session, noting points of interest. In addition, the writings and solutions to 
exercises of each student were photocopied after the video session. These field notes and student 
solutions were used in the interpretation of the transcripts.  
Analysis and results 
I used the constant comparative method (Glaser and Strauss 1967) as my method of analysis. The 
analysis of data consisted of four major iterative steps. First, there was the descriptive level: I read 
through the transcript of each video session, together with field notes and the student’s photocopied 



 Different Reading Styles 

 
 71 

solutions. This allowed me to make notes on the transcripts describing what was happening. (For 
example, “Student A writes Property 1 (

loga Ma M= ) explicitly in Proof of Property 6; Student B 
does Exercise X quickly and correctly.) 
During the descriptive level, I generated four broad analytic categories regarding the student’s 
reading of the textbook sub-chapter. These four categories were ‘Extent of reading’, ‘Focus’, 
‘Connections’, ‘Quality of solutions to exercises’. ‘Extent of reading’ relates to the how of reading. 
It is loosely measured by the extent of paraphrasing or explaining of the text. This category derives 
from the literature on academic reading skills where a close or intensive reading of the text is 
distinguished from skimming or scanning the text. ‘Focus’ relates to what the student was reading. 
It refers to the component of the text (proof, worked example, alternate representation, etc.) that the 
student is paying attention to. When reading a mathematics textbook, the issue of whether the 
student pays attention to theory, procedures, or alternate representations, and so on, is an important 
criterion in describing the actual reading. ‘Connections’ refers to which component of the text, if 
any, the student is making connections to. In mathematics education literature (see, for example, 
Watson and Mason, 2006) the quality of connections between different mathematical ideas, 
representations, examples and so on is fundamental to understanding. Correctness of solution refers 
to the correctness and quality of justification and explanation in the execution of the exercises. This 
in itself is one measure of the quality of reading.  
I then re-read the transcripts, applying the analytic categories to interpret the data (for example, 
focuses on proof of Property 5; connects solutions of exercise to property 2). I then generated short 
narrative descriptions of each student’s activities while reading the textbook; concurrently I 
produced a table containing the names of the five students against the analytic categories. All these 
steps were repeated several times so as to refine the descriptions, the analytic categories, the 
summary accounts and the table. After this, a typology of different styles of reading was generated 
for different patterns revealed during categorization.   
This analysis resulted in five different styles of reading: close reading with strong connections; 
close reading with some connections; scanning, skimming and avoiding. ‘Close reading with strong 
connections’ is characterised by a comprehensive reading of all the text (evidenced by paraphrasing 
and explanations) as well as the making of explicit connections to prior knowledge or to other parts 
of the text while reading the text and doing exercises. It resembles the category of intensive reading 
in academic skills reading. ‘Close reading with some connections’ is similar to ‘close reading with 
strong connections’. The difference is that the reader does not make explicit connections to the text 
when doing the exercises. However, the reader does make explicit connections to prior knowledge 
or components in the text when reading the text and she is able to conceptually justify her solutions 
to exercises when asked to do so. Skimming and scanning relate to skimming and scanning 
respectively in academic reading skills. Specifically, ‘scanning’ is characterised by the reader 
looking for keywords or information in the text and using this information productively. In contrast, 
‘skimming’ is characterised by the reader noticing specific keywords or information in the text but 
not finding the appropriate components (e.g. worked examples, properties) to support the reading in 
the text, or not being able to use the appropriate component in a productive way. ‘Avoiding’ is 
peculiar to mathematics reading: theory and proofs are mostly avoided and most attention is 
focused on procedures. Further investigations with different students and different texts should 
yield further elaboration of these reading styles and, possibly, other different mathematics reading 
styles. 
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ANALYZING CLASSROOM WORK: 
STUDENTS’ USE OF DIGITAL TEXTBOOKS 

KRISTINA REISS, STEFAN HOCH, FRANK REINHOLD, BERNHARD WERNER, 
JÜRGEN RICHTER-GEBERT 

Introduction 
In a time where students are considered to be digital natives (Prensky 2001), the change from 
traditional printed textbooks to digital tools seems inevitable. While digital textbooks may offer the 
same content as a paper-based version, they may provide other methods of presenting the content 
and – maybe more importantly – offer new ways of experiencing content, due to their digital nature: 
Features such as automatic correction and automatic, immediate feedback that is programmed to 
support and not to judge students (cf. Hattie and Timperley 2007) offer valuable add-ons to 
traditional textbooks. Moreover, interactive multimedia exercises give new opportunities in 
textbook design. ALICE:fractions (Adaptive Learning in an Interactive Computer-supported 
Environment) makes use of these advantages. As an interactive digital textbook, it offers a learning 
environment aiming at assisting students’ work with fractions. The environment is intended to be 
used on tablets, allowing for a natural way of input which has been found to be beneficial for the 
acquisition of certain mathematical concepts (cf. Black et al. 2012). 
In addition, digital textbooks can support teachers in diagnosing students’ learning processes. Since 
the content is displayed in a computer-supported environment, the recording of process data is 
possible. The data gathered by ALICE:fractions allows for a closer look into how students use the 
learning environment, providing access to the amount of tasks they solve and how long it takes 
them to solve each task. Moreover, the analysis of students’ answers can include data like their 
finger movements on the touchscreen, allowing their way to the answer to be examined. 
Accordingly, it is possible to get insights in students’ understanding or misunderstanding of fraction 
concepts. 
In our study, we concentrate on the analysis of visualization tasks that are supposed to foster 
students’ understanding of the magnitude of fractions. These tasks can be solved in various ways 
according to the strategies used by the students. For example, students may see a solution 
immediately or may use other and simpler fractions for orientation. These different strategies result 
in different ways of representing fractions on a touchscreen and in different finger movements. 
Method and Sample 
During a four-week intervention, 28 students (one grade six class) worked with two visualization 
exercises during their first lesson on fractions (one iPad per student; see Figure 1 for examples). 
The tasks were randomly generated on each iPad; denominators varied from 2 to 12. During the 
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work on the iPads, students’ finger movements on the touchscreen were recorded as lists of 
coordinates plus a timestamp. This allows the solving process to be replayed by researchers. The 
total of 578 solutions (346 circle, 232 bar) were individually screened and grouped with respect to 
recurring patterns. 
The visualization exercises were adapted from a hybrid representation model for rational numbers 
(Carraher 1993). Students were asked to find a given fraction in a bar or a circle by filling the 
correct portion of the object either by dragging their finger over the touchscreen or by tapping at the 
correct part of the object. Both tasks are continuous in the sense that no division was predefined; a 
solution could not be found by counting, but was only possible based on understanding. 

  
Figure 1. Visualization exercises in the digital textbook. 

Results and Discussion 
Students’ finger movements provided evidence for typical patterns in their ways of solving the 
problems. In particular, one can differ between correcting and immediate processes: when using a 
correcting pattern, the solving process showed clear correction movements at the end of the process. 
In the other case, a student let her first input be evaluated. Furthermore, one can distinguish patterns 
that contain visible pauses. These pauses may appear at certain benchmarks (like e. g. ½) or depict a 
dividing process into equal shares.  
We observed that the different shapes (bar, circle) might lead to different strategies for a solution: 
students showed lower rates of correcting errors when working with circles and no student 
separated a circle into equal shares (thus probably felt more comfortable with well-known objects). 
Furthermore, students started more often with separating into halves (falling back to well-known 
fractions) when working with bars. These findings suggest that identifying fractions on a 
continuous bar is more difficult for students with low experience on working with fractions – a fact 
mirrored by the observed solution rates (0.45 vs 0.61; deviations up to 3% from the exact solution 
were accepted as correct). 
Finger movements could be linked to typical solution strategies: Pauses at ½ in the solving process 
might indicate an intrinsic comparison to ½, while separating into equal shares facilitates counting 
strategies that can also be applied to discrete tasks. 
Our observations indicate new possibilities of research in mathematics education. However, further 
research is needed relating solving patterns to solution rates and the development of the usage of 
specific strategies over time. Teachers should benefit from this data because certain patterns (e. g. 
separating into equal shares) might indicate the lack of a holistic concept of fractions calling for 
more classroom work. 
These findings are also available in German (Hoch et al., forthcoming). 
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USES OF DYNAMIC TEXTBOOKS IN UNDERGRADUATE 
MATHEMATICS CLASSROOMS 

ANGELIKI MALI, VILMA MESA, UTMOST TEAM 

Introduction 
We present preliminary findings from a pilot study conducted within the context of the 
Undergraduate Teaching and Learning in Mathematics with Open Software and Textbooks 
(UTMOST) project. The project lays the ground work for understanding the affordances and 
challenges of developing and using open source learning platforms in the teaching and learning of 
linear algebra and abstract algebra. We pursue two foundational questions: (1) How do students and 
instructors use textbooks? and (2) How can we develop textbooks that will improve teaching and 
learning? We seek to develop data collection instruments and test analytical processes. The 
products are instruments for data collection for a larger study that will also investigate correlations 
of resource use and student learning. 
Context  
The UTMOST project focuses on the development and use of open source computational resources 
in the teaching and learning of mathematics at the undergraduate level. The project continues work 
in the development of four interconnected suites of technological resources, including the 
Collaborative Calculation in the Cloud (CoCalc), a web application that provides a scientific 
computing environment for collaboration among groups of people. The research component 
investigates how textbooks in the open source platform are used by instructors and students in 
Linear Algebra and Abstract Algebra. Our overarching aims of the research component are: (1a) To 
identify the instructor and students’ use of textbooks that are either in the open source platform or 
as an identical PDF, (1b) To contrast the uses of these resources (same content, different platforms), 
and (2) To propose measures of student learning that would potentially identify the impact of these 
resources.  
Theoretical and Analytical Underpinnings  
Following Gueudet and Trouche (2009), we seek to investigate two documentation processes, 
instrumentation, the influences on the user of the affordances and constraints of a set of available 
resources, and instrumentalization, the influences on the resources that are a consequence of the 
user’s use of those resources (see Figure 1).  
A document is seen as a set of resources together with the schemes of utilization. The set of 
resources include three distinct components, a material component (e.g., the physical textbook, the 
software available), the mathematical component (e.g., the definitions available in the resources that 
can be different from canonical definitions because of the availability of computational resources), 
and the didactical component (e.g., the process of designing assignments). We focus on lesson 
planning and lesson enactment, seeking to identify operational invariants, instructors’ beliefs that 
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shape the design and use of resources (e.g., beliefs about ways with which students better 
understand definitions). Because of the exploratory nature of the work, we are not, at this point 
concerned with institutional influences, the exploration of different contexts, nor with the evolution 
of the documents over time. We also seek to identify students’ utilization schemes, possibly 
adapting some of the theorization proposed by the documentational approach, because the research 
of students’ use of their textbooks in undergraduate settings is in its infancy. 

 
Figure 1: The documentational approach (Gueudet and Trouche 2009). 

Methods 
In the pilot phase, we collected in-depth data from four instructors, three of whom were using the 
dynamic version of the textbooks, via surveys, video recordings of lessons and of planning sessions, 
interviews, and bi-weekly self-reports of textbook use. In addition, we collected student surveys, 
bi-weekly self-reports of textbook use, focus groups, and tests of knowledge. We followed the 
methodologies proposed by Gueudet and colleagues (2012) and by Rezat (2012). Importantly, the 
nature of the dynamic textbooks allows for capturing computer generated data of student and 
instructors’ use, which think of using to complement the instructor and students’ self-reports. 
Findings 
Our first finding pertains to wide differences both in the network of resources mentioned by the 
four instructors, and in their awareness of that network. They consulted departmental archives; their 
own prior lecture notes, lesson plans, and exams; the course textbook; secondary textbooks (e.g., 
used by other instructors, or as students); colleagues; and listservs. In addition, they used Sage and 
LaTeX, and considered as resources students’ questions and difficulties with the mathematics or, in 
the case of the instructors using the CoCalc, students’ productions in that environment. Instructors 
mentioned many resources without labeling them as such. We identified them as they described 
their processes of planning and teaching their lessons. In spite of the variation in material 
components, we identified several common mathematical and didactical components in regards to 
the textbook: specifically, the mathematical component included the available mathematical topics 
(e.g., orthogonality, basis), examples, applications, and Sage (in the case of the dynamic textbooks) 
for which the didactical component included: selecting, rewriting, and summarizing topics, 
examples and applications, and design of assignments for the dynamic textbook. We also noted 
variation in the use of dynamic features, which seems to be related to instructors’ knowledge, 
understanding, and familiarity of those features and their location within the textbook. Finally, we 
identified the lecture notes as a key document that was created by all instructors and used 
differently both in planning and lesson enactment. This will be the focus of further data collection. 
Regarding our methods, we realized that lesson planning occurs over extended periods of time, so 
one week of site visits is not always enough to capture that aspect. Also, we received limited 
student responses of their textbook use in bi-weekly logs, so we now consider including questions 
about their use of resources and creation of documents. 
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PEDAGOGICAL FUNCTIONS OF INTERACTIVE TEXTS 
ELENA NAFTALIEV  
 
Technological development has caused changes in learning environments in general and textbooks 
in particular. The affordances and constraints of the presentational media were always part of the 
mathematics culture. Describing the communication of Greek mathematicians, Netz (1999) 
suggests that the limitations of the media available (wetted sand, dusted surface or wax tablets) 
were essentially similar to those of modern books: "Diagrams, as a rule, were not drawn on site. 
The limitations of the media available suggest rather, the preparation of the diagram prior to the 
communicative act - a consequence of the inability to erase" (p.16). An interactive diagram (ID), is 
a relatively small unit of an interactive text (in e-textbook or another material). The ID`s 
components are the given example, its representations (verbal, visual and other) and interactive 
tools. A static diagram that presents specific information presents a point of view thus implicitly 
engaging the viewer in meaningful interpretations. An ID presents information and explicitly 
requires the viewer to take action and change the text within given limitations. 
“Visions of the future of the textbook raise questions about the pedagogical functions of this 
educational form: What is it that textbooks provide pedagogically and epistemologically, besides a 
reminder of the weight of the past? How might they change in the future, and how could such 
changes serve the interests of publishers, authors, students, and educators?” (Friesen, 2013, p.2). 
Interactive textbooks are envisioned as allowing the learner and teacher to approach texts in an 
exploratory mode, rather than simply receiving it in a fixed, prepackaged form (Naftaliev, 2018). 
There are profound differences between the traditional page in math textbooks that appears on 
paper and the new page that derives its principles of design and organization from the screen and 
the affordances of technology. This issue requires scholars to develop lenses for analyzing 
pedagogical design and teaching-learning processes with interactive texts. Therefore, we developed 
and elaborated semiotic framework for pedagogical functionality of ID that would allow an orderly 
discussion of the subject (Naftaliev & Yerushalmy, 2017). There are three functions of ID in the 
framework: the presentational function, the orientational function and the organizational function 
(Table 1).  

 
Table 1. The semiotic framework: Three types defining the functionality of IDs 

Presentational function Orientational function Organizational function 
Specific  
Random  
Generic  

Sketchy 
Accurate 

Sketchy and accurate 

Illustrating 
Elaborating 

Guiding 
 
The presentational function focuses on what and how is being illustrated by the diagram. Three 
types of examples are widely used: specific, random, and generic examples. Specific examples 
present the exact data of the activity of which they are part of. They serve as a dynamic illustration 
that helps analyze the situation without being able to change the information. Random examples are 
specific examples generated within given constraints, presenting different information at various 
times and for different users. In a generic example, the diagram is structured to be representative; it 
presents a situation that can be part of the given task, but it is not intended to present the specific 
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data of the activity but to help learners become acquainted with the generic views of the example 
through a process of inquiry. The tone in which the text addresses the learner is subject to design 
decisions having to do with the orientational function. “Sketchiness” vs. “rigorousness” of 
diagrams is an important factor in reader orientation. An accurate ID has richness of detail, but 
completeness of detail in sketch means that the user has to work in order to see through the whole, 
to make contact with and examine details. For example, the sketchy ID in Figure 1b could serve an 
accurate ID, by providing the values of ordered pairs for any point on the plane according to the 
user's choose. In our research (e.g., Naftaliev & Yerushalmy 2011) the activity was first illustrated 
by a paper diagram (Figure 1a) and then by an ID (Figure 1b). With the paper diagram Roni found 
the coordinates of the marked points but was not able to write the symbolic expression of the 
function. With the ID she perceived the given graph as a sketch; the description was of a line with a 
positive slope that intersects "somewhere below." At the same time, dynamics of mouse tracing in 
the ID sketch that accompany the changes in coordinate values helped her start to consider the idea 
of rate. She followed the changes of the coordinates along the line, tracked the coordinates on the 
graph, organized values of consecutive integers in a table and calculated the differences between the 
values in the table and the ratio between the differences to find the slope. The ID’s design made it 
possible to address the given graphs as a sketch, but at the same time the sketch can be interactively 
unfolded into a detailed accurate diagram, which causes students to change their focus from data 
testing to choosing the necessary data. 
 
Write an expression describing 
the given line graph containing 
the two points marked on the 

diagram.  

         (a)          (b) 
Figure 1: “Sketchiness” vs. “rigorousness” 

 
The organizational function looks at the system of relations defining wholes and parts and 
specifically at how the elements of text combine together. IDs can be designed to function in three 
different ways: Illustrating, Elaborating, Guiding. Illustrating IDs are simply-operated, 
unsophisticated representations. They are intended to orient the student’s thinking to the structure 
and objectives of the activity by usually offering a single representation and relatively simple 
actions. The important components in the design of the Elaborating IDs are rich tools and linked 
representations that enable various directions in the search for a solution.	We use the term Guiding 
ID referring to guided inquiry. This kind of ID provides the means for students to explore new 
ideas. In addition to providing resources that promote inquiry, they also set the boundaries and 
provide a framework for the process of working with the task.  
Using the framework as an analytical lens, we were able to examine the characteristics of activity 
consisted of reading and solving tasks which are presented as IDs and to analyze how do the 
characterizations of processes vary in accordance to the three designed organizational functions of 
IDs: illustrating, elaborating, and narrating? We analyzed the work of 13-14 year-old students in 
task-based interviews, focused on three major fields in the school-algebra curriculum (Modeling, 
Formulating mathematical phenomena, Manipulating). The chosen sequences intended to reduce 
the effect of specific algebra content on research conclusions. Each series includes a preliminary 
task and three comparable tasks; each was designed upon a semiotic framework.  
Across our studies, we had found that similar tasks with different IDs should be considered as 
different learning settings. We found that even the minimal interaction designed in the illustrating 
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ID can be helpful in consolidating relevant knowledge that is not adequately structured yet. 
Students who worked with the ID looked for ways to bypass the designed constrains: they changed 
the representation of the data in the given example and expanded the given representations or built 
new ones. Regarding guiding IDs, we found that it can be a form of instruction toward development 
of new mathematical ideas. The guiding IDs’ design limits the student's action and at the same time 
provides an open space for student’s ideas. The various linking tools and representations in the 
elaborating IDs lead to different problem-solving processes and a variety of solutions. The 
differences between methods were manifest in the variety of the significant items in the examples, 
in the representations students chose to work with, in the order of preference of the various 
representations and in the choice to use or not to use the included tools.  
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DEVELOPING CATEGORIES OF CURRICULAR METADATA: 
LENSES FOR STUDYING RELATIONSHIPS BETWEEN 

TEACHERS AND DIGITAL TEXTBOOKS  
SHAI OLSHER, MICHAL YERUSHALMY, & JASON COOPER 
 
Digital textbooks and other curricular resources can provide many opportunities for teacher 
engagement in the form of organizing content and generating innovative mathematical experiences 
for their learners. When attempting to study the interactions of teachers with digital curricular 
materials, we explore ways to support the teacher's potential role as a cartographer (Remillard, 
2016) - having to generate a representation of a domain of curricular materials, and also to set paths 
that would help learners get better acquainted with the mathematical terrain. 
Our object of mapping is a digital textbook, for which we use the broad definition of Pepin et. al 
(2015) for an evolving e-textbook: an evolving structured set of digital resources, dedicated to 
teaching, initially designed by different types of authors, but open for re-design by teachers, both 
individually and collectively. While the evolving content (tasks, tools, learning objects) is an 
important aspect of the textbook quality, we view the properties of the “collection” - structure, 
balance, and sequencing - as crucial to the coherence and quality of the book. Considering that 
textbooks include a representation of their content, e. g. table of content, or a site map, teachers, 
when given the opportunity, may still suggest to modify textbooks to make them more accessible 
(Olsher & Even 2014). 
Research on textbooks includes two foci – the intended curriculum constituted in the textbook, and 
teachers’ enactment, often investigated in small-scale case studies. Analysis of textbook usage tends 
to be theory-driven; researchers decide what aspects of textbooks and their use to analyse – from 
the number of pages taught in a particular topic to nuances of common core standards evident in 
tasks, which are or are not enacted. We propose a methodological approach that addresses both 
intended and enacted aspects, while making room for the teachers' perspective alongside the 
researcher's. This is achieved through teachers’ tagging of curricular material, using a tool 
implemented as a browser extension; web-based tasks, tagged by predefined categories of metadata, 
create a collective dataset of curricular material for teaching. Patterns of individual teachers’ 
tagging provide insight on their interaction with the textbook, while collective tagging of a single 
textbook by a diverse group of teachers (averaging over all taggers) provides a more objective view 
of the textbook itself. 
Our work includes design-based research of the tagging tool and its categories of didactic metadata. 
One of the considerations in the initial selection of coding categories was the ability to describe 
technology-related characteristics of interactive tasks. This provided a literature-based starting 
point, from which we listen to and learn from teachers. We have modified the categories based on 
teachers’ perceptions of relevance for representing curricular material. As proof of concept for our 
categories of metadata for characterizing the design of a textbook, we gathered 9 practitioners - 
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teachers, mathematics education graduate students, and mathematics education researchers – to 
jointly tag 74 tasks (3 chapters) in the pre-calculus Visual Math textbook “Analysis – Computer 
supported inquiry activities for high school” (Yerushalmy et al. 1996). The tasks were randomly 
distributed among the taggers, and the tagged chapters were represented visually using a 
Keshif-configured dashboard (Yalcin, Elmqvist & Bederson 2016).  
Initial analysis of this representation of the textbook contents revealed 17 “insights” regarding the 
data set, in the form of correlations among the categories of metadata. The textbook designer was 
then invited to comment on these insights, and was subsequently interviewed. Insights were 
classified as: 1) Intentional correlation: Insights that are consistent with the author’s didactic 
intentions; 2) Tacit correlation: Insights that the author acknowledged, but had not incorporated 
intentionally; 3) Not relevant: Insights that were deemed not relevant to the author’s intentions. We 
now present examples of each of these categories, along with the designer’s reaction. Metadata 
categories appear in italics. 
1) Intentional correlation: Nearly all the tasks that were perceived as suitable for opening a topic did 
not include an explicit symbolic representation (i.e. algebraic) of a function. Author’s reaction: 
“This is the definition, generally speaking, of an opening task – to arrive at the symbolic from 
sensing, complex problems which one can think about, non-mathematical information etc”. 2) Tacit 
correlation: In the “derivative” chapter, students are rarely expected to provide non-technological 
justifications for their answers. Author’s reaction: “This is a logical implication of two other 
principles: derivative requires a lot of symbolic work, and when working symbolically you cannot 
rely solely on technology". 3) Not relevant: Symbolic representation is especially common in tasks 
that invite students to draw conclusions. The author’s reaction: “I am not sure why this 
phenomenon shows up in the data… Maybe this attests to the type of conclusions [the taggers] 
aspire to. For example – what does a conclusion from a graphic representation without symbolic 
representation look like? That [kind of activity] is probably not represented in this collection.” 
We have focused on how tagging didactic metadata can contribute to research on textbook analysis, 
and have shown that the categories of didactic metadata can assist in revealing characteristics of 
datasets of curricular materials. Furthermore, these insights can serve as an object for discussion 
with designers to elicit their didactic intentions, and with teachers to elicit their interpretation of the 
material. Investigation of individual teachers’ interactions with textbooks are ongoing and will be 
reported elsewhere. We note that there are limitations to the method we have employed: taggers and 
designers might not share meanings for metadata keywords, small scale tagging may be 
tagger-dependant, and the represented characteristics are limited to what can be tagged.  
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THE EUCLIDEAN DIVISION IN THE EARLY GRADES 
 LUISA RODRÍGUEZ DOERING, JANETE JACINTA CARRER SOPPELSA, 
CYDARA CAVEDON RIPOLL 

 

Abstract 
In this article we aim to highlight the importance of the remainder in the Euclidean division starting 
at the first grades of elementary school. We present questions that help the reader to reflect on the 
meaning of the Euclidean division, in which the remainder plays a fundamental role. Taking into 
account these questions, the guidelines of the official documents and the analysis of textbooks of the 
initial grades, we report on the topics of reasoning, discussion and proof in textbooks, suggested in 
Symposium B (Deductive Reasoning, Argument and Proof in Textbooks) and we propose activities 
that we believe will help to promote the understanding of the Euclidean division in its entire scope. 
Key words: Division in the first school grades. Euclidean division. Remainder. 
Introduction 
The ideas of division between natural numbers appear in the early grades of elementary school. At 
this level, division is a complex operation for the student, since, “compared to other elementary 
operations, division with natural numbers is different in the following sense. While in addition, 
subtraction and multiplication we have two input values and obtain only one third output value, 
which is the result of the operation, the division with naturals involves two values as a result, 
namely, the quotient and the remainder.” (Ripoll, Rangel & Giraldo 2016, p. 104) 
This first consideration shows that division is a complex operation for the student in the early 
grades and points to the particular attention that the teacher should devote to the introduction of the 
Euclidean division, as well as to its follow-ups in the 6th grade, and taking into account aspects that 
are often ignored in the classroom, as well as in textbooks. 
In this article we invite the teacher to reflect on the Euclidean division and the important role of the 
remainder, considering the essential aspects of this operation, as follows. 
• Is it natural to begin the discussion concerning the division of natural numbers exclusively 

with dividends that are multiples of the divisor? 
• Are the zero remainder situations really the divisions that happen most frequently in the 

student's daily life? 
• Does not the division in N (the natural numbers) have a life that is “independent” of 

multiplication, unlike what happens between addition and subtraction? 
 

Based upon this reflection and the analysis of some textbooks, we present some suggestions for 
activities which, we believe, could help to promote the understanding of the division operation. 
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Thus, in the following, 
• we present our reflections on the orientations in official documents concerning the division 

operation; 
• we describe how the Euclidean division is introduced in some textbooks of the early grades, 

reporting the situation on the theme concerning reasoning, arguing and proof in the 
textbooks --- suggested in Symposium B (Deductive Reasoning, Arguing and Proof in 
Textbooks) --- and make some comments on it; 

• aiming to contribute to the student’s understanding of such an operation in its entirety, we 
suggest some activities to approach the Euclidean division in the early grades. 

What the official documents say about the division of natural numbers 
The proposals presented in the Parâmetros Curriculares Nacionais1(PCN) are open and flexible, 
not being an homogeneous and imposing curricular model. 
The idea of sharing is present in children's experiences from an early age on, for example, in 
sharing candies with their siblings. The PCN themselves recognize that students bring knowledge 
and ideas built upon their daily experiences into the school and get to the classroom with some 
knowledge about the division. This document suggests that the teacher should take advantage of 
such experiences and make use of manipulative resources such as chips, sticks, grains, etc. to 
introduce and deepen the study of this operation (Brasil 1, 1997, p. 25). Regarding operations,  PCN 
states that the work to be done should focus on the understanding of the different meanings of each 
one of them, on the relations between them and on the reflexive study of the calculus, 
contemplating different types - approximate or not, mental and written and the objectives for the 
first cycle reinforce the resolution of problem situations in order to give the student the perception 
of the meaning of the fundamental operations, besides recognizing that the same operation is related 
to different problems and that the same problem can be solved by using different operations. (Brasil 
1, 1997, p. 39) 
The document emphasizes that the addition and subtraction operations should be emphasized in the 
first cycle of Elementary Education and that multiplication and division calculations should be 
carried out through personal strategies, not offering more details about the latter operations. 
In the PCN we find that “as in the case of addition and subtraction, it is important to work together 
on problems that exploit multiplication and division, since there are close connections between the 
situations that involve them and the need to work upon these operations (...)” (Brasil 1, 1997, p. 72). 
It is suggested that, starting with multiplication situations, it is possible to formulate situations that 
involve division, reinforcing the close relationship between the two. 
The Base Nacional Comum Curricular2 (BNCC) contains the objects of knowledge and the skills 
intended for the children and young people in each stage of Basic Education. In the version 
currently available (http://basenacionalcomum.mec.gov.br/images/BNCCpublicacao.pdf), BNCC 
agrees with  the PCN considering important that the teaching and learning of operations in the 
initial grades of primary education should be supported in situations of interest of the students, 
associating questions of reality to those that involve the world of fantasy, play or games that justify 
the realization of some calculation. Also in this document the expectation, with respect to natural 
numbers, is that students, at the end of the initial stage, “solve problems with natural numbers 
involving the different meanings of operations, argue and justify the procedures used for the 
resolution and assess the plausibility of the results found. Regarding the calculations, students are 

                                                                            
1  Parâmetros Curriculares Nacionais (PCN) are the Brazilian standards for the first nine grades of 
Elementary School. 
2 Base Nacional Comum Curricular establishes the minimum curriculum that will soon guide every Brazilian 
school. 
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expected to develop different strategies for obtaining the results, especially by estimation and 
mental calculation, as well as algorithms and calculators.” (Brasil 2, p. 224) 
Specifically, about working with the division operation, it is suggested that it should start in the 2nd 
grade, having as expected ability to “solve and elaborate problems involving double, half, triple and 
third part, with the support of images or manipulative material, using personal strategies” (p. 239). 
For the 3rd grade it is suggested that the different meanings of the division be worked out (division 
into equal parts and measurement), seeking to attain the ability “to solve and to elaborate problems 
of division of a natural number by another one (up to 10), with remainder zero and with remainder 
different from zero, with the meanings of equitable distribution and measurement, through 
strategies and personal registers.” Here we notice an allusion to the Euclidean division, although it 
was not highlighted among the Objects of Knowledge of the 3rd grade. When suggesting for the 4th 
grade to reach the ability “to solve and to elaborate problems of division whose divisor has a 
maximum of two figures, involving the meanings of equitable distribution and of measurement, 
using several strategies, like estimate by calculation, mental calculation and algorithms” (p. 247) no 
mention is made of the problems involving exclusively an Euclidean division in its resolution, but 
whose response is neither the quotient nor the remainder, much less its approach is suggested. For 
the 4th grade, the document also requires that the student should “recognize, through investigations, 
that there are groups of natural numbers for which divisions by a given number result in equal 
remainders, identifying regularities” (p. 246), and that “the relations between multiplication and 
division are worked out in the 4th grade with the purpose of leading the student to recognize, 
through investigations, using the calculator when necessary, the inverse relations between addition 
and subtraction operations and multiplication and division, to apply them in problem solving.” (p. 
247). It certainly seems that only the particular case of Euclidean division with remainder equal to 
zero is suggested, thus allowing multiplication and division to be interpreted by the student as 
inverse operations. 
What do the textbooks of the early grades say about division with natural numbers 
We analyzed six collections of textbooks of the initial grades of Elementary School (Table 1), all 
approved in the Programa Nacional do Livro Didático3 (PNLD).  In this analysis we observed how 
the division is introduced and how the remainder of a Euclidean division is treated, as well as the 
type of activities proposed.  
We noticed that, in all the analyzed collections, the division is introduced in the second grade, after 
multiplication, with both meanings: splitting in equal parts and measure. 
 

Collection PNLD 
Projeto Buriti: Matemática 2013 
A Conquista da Matemática 2013 

Matemática: Pode contar comigo 2010 
Coleção Ápis – Matemática 2013 

Coleção Aprender - Muito Prazer 2013 
Coleção Construindo o Conhecimento 2007 

Table 1: Analysed collections 
With the exception of one of the analyzed collections, the division always appears with a dividend 
that is multiple of the divisor, with no mention to the remainder in the first examples. Although it is 

                                                                            
3 The Programa Nacional do Livro Didático (PNLD) is Brazil´s textbook assessment program, 
which includes mathematics and selects the textbooks that are freely distributed by the Brazilian 
Ministry of Education. 
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clear that there is a close and undeniable relation between multiplication and division, the student 
may be led to think that the division also has only one output, the quotient. 
It is visible in these textbooks the absence of a convention for the word “division” with regard to 
“splitting in equal parts”. It should be noted that, for a 2nd grade student, the splitting in equal parts 
is not always natural, so at the very least the term “division” requires a reflection, as in the situation 
suggested by Figure 1. 

 
Figure 1. Source: archives of the authors 

We reassure, still regarding the little emphasis given to the convention of the term division, that not 
only the term implies “equal parts” but also implies “remainder < divisor”, an essential condition to 
be considered in the construction of algorithms for division. In none of the reviewed books we 
found reference to the fact that, for example, although both equalities 17 = 5 × 2 + 7 and 17 = 5 × 3 
+ 2 are true, only the second one comes from what is defined as division in N (Euclidean division). 
In the analyses we could find only one textbook, which emphasized that the quotient is the largest 
multiple of the divisor that is smaller than the dividend. In all other textbooks the necessary 
conditions for a process of splitting to be called division are not emphasized, and therefore a crucial 
element of mathematical thinking is neglected. 
Many authors of the analyzed textbooks, right after introducing the division and giving examples 
involving exclusively zero remainder, end up exploiting multiplication and division as inverse 
operations, some even including a section entitled “Multiplication and Division: Inverse 
Operations”  and  emphasizing that “it happens with multiplication and division the same that 
happens with addition and subtraction.” In addition to the fact that this statement is not true in the 
numerical universe N, it goes against the orientation of the official documents cited in this text 
concerning the preference that should be given at this level to contextualized examples. Moreover  
this phrase suggests to the student that in all divisions in N, the remainder is always equal to zero. 
Figure 2 shows a situation that illustrates that the non-zero remainder in a Euclidean division is part 
of the daily life of the child. In other words, the Euclidean division is the only one that makes 
sense in the numerical universe N, and very often the remainder has a preponderant role in 
the problem being considered. 
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Figure 2 . Source: archives of the authors 

Soppelsa (Soppelsa, 2016) in her analysis of the textbooks of the 6th  grade remarks that, in most of 
them, the meaning of the remainder in an Euclidean division has been given no importance or 
emphasis, receiving only the status of leftover. Also, most of the exercises require only direct 
computations, focusing almost exclusively on the quotient.  
In our analysis of textbooks, we could reaffirm Sooppelsa’s findings, and in only one of the 
analyzed collections we could find some exercises that are solved making use of a division but for 
which the answer is neither the quotient nor the remainder, but the interpretation of this result.  

 
Figure 3: on the left, an excerpt from Isolani et al. (2005a), p. 195 and its translation on the right 

We could also find little emphasis on pictorial representation in the calculation of divisions with 
nonzero remainder. It should be noted that such representation can really help the student, both in 
the visualization of the calculation (see, for example, Figure 3) and in the establishment of the 
inverse process, which not only allows to verify if the operation was performed correctly but also 
generalizes generic thinking, leading the student to perceive the relationship between the terms of 
division, 
dividend = divisor × quotient + remainder, 
and to justify its validity with words. Moreover, the above relationship suggests that division in N 
has an “independent” life of multiplication, unlike what happens with addition and subtraction, 
which are inverse operations of one another. 
Some suggestions for the teaching of Euclidean division 
Taking into account the issues previously discussed and the textbooks analysis carried out, and also 
intending to stimulate the mathematical thinking of first grades’ students, we suggest that teachers 
offer their students opportunities to explore: 
• awareness of the need to establish a convention for the ideas associated with division, 

including 
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i) the terms “splitting”, “repartition” and “distribution”  do not imply “equal parts” (as shown in 
Figure 1, with respect to the number of persons); 
ii) splitting in equal parts in N does not imply remainder equal to zero (as in Figure 2); 
iii) splitting in equal parts does not imply leftover smaller than the divisor (as in Figure 4 and in 
Activity B); 
• sensibilization to the universal convention for the expression “division in N” or Euclidean 

division, including 
iv) equal parts (as in Figure 1, with regard to the distribution of the weight of the persons); 
v) remainder smaller than the divisor (as in Activity B, below, including questions (a) and (b), 
aiming to emphasize this condition), including a discussion of the equivalence between “smaller 
than the divisor” and “the greatest quotient possible”; 
vi) the fundamental relation dividend = divisor × quotient + remainder (inspired by, for example, 
Figure 3 and Activity B); 
vii) uniqueness of the quotient and the remainder satisfying the necessary conditions for a process 
of splitting to be called division (as in Activity B).  
A suggestion of activities 
In the following we suggest some activities to approach the Euclidean division in the early grades, 
aiming to contribute to the student's global understanding of this operation.  
Activity A: Observe Figure 4 and answer: how many children will have to wait for the next trip on 
the train? 

 
Figure 4 . Source: archive of the authors 

In order to motivate the definition of the Euclidean division as the splitting in equal parts that 
generates the largest quotient and the smallest remainder, we suggest the following activity, 
inspired and adapted from exercise 2, p.103 of Isolani et al (2005b). 
Activity B: Peter has 38 candies. He would like to offer an equal amount of candies to each of his 7 
friends. Complete the table below to assist him with all the possibilities of distribution. 

Candies distribution Number of  distributed 
candies 

Amount of 
leftovers 

1 candy for each of the 7 
friends  

 

2 candies for each of the 7 
friends  

 

3 candies for each of the 7 
friends  

 

4 candies for each of the 7 
friends  

 

5 candies for each of the 7   
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friends 
6 candies for each of the 7 

friends  
 

7 candies for each of the 7 
friends  

 

8 candies for each of the 7 
friends  

 

           Table 2: Activity B 
This activity allows a comparison between the various distributions in 7 equal parts. The teacher 
can encourage the students to record in the second and third columns, in addition to the values, the 
operations performed to obtain them (see Table 3). 

Candies distribution Number of 
distributed candies Amount of leftovers 

1 candy for each of 
the 7 friends 7 × 1 = 7 31 = 38 – 7 = 38 – 7 × 1 

           Table 3: Analysis activity B 
We propose next some questions that could guide the ideas of the Euclidean division and which 
contemplate the items listed in the previous section. 
(a) What is the largest number of candies that each friend can receive? Is there any leftover in this 
distribution? If yes, how many candies is the amount of leftovers? 
(b) Which distribution corresponds to the smallest amount of leftovers? 
(c) Is it possible to distribute 6 candies to each of the 7 friends? Why? 
Item (a) allows the recognition of the distribution that guarantees the largest number of candies per 
friend (5 candies for each friend); item (b) allows the observation that this distribution is also the 
one that has the smallest amount of leftovers (3 candies) and that is the only one in which the 
number of leftovers is smaller than the number of friends. Item (c) seeks to emphasize that, in order 
to distribute one more candy to each friend, we should have at least 42 = 7 × 6 candies, which 
exceed the 38 candies that Peter has.  
The discussion of the above items should lead the students to conclude that the distribution with 
largest quotient and smaller remainder is unique, thus receiving a special denomination: (Euclidean) 
division of 38 by 7, the value 5 being called the quotient, 3 the remainder, 7 the divisor and 38 the 
dividend. 
This activity also allows retrieving the total number of candies from each of the rows of the table, as 
shown in the following table. 

Candies distribution Number of 
distributed candies Amount of left overs Recovering the total 

amount of candies 
4 candies for each of 

the 7 friends 7 × 4 = 28 38 – 7 × 4 = 38 – 28 = 10 7 × 4 + 10 =38 

Table 4: Recovering the total amount of candies 
The complete table shows six ways to retrieve the total number of candies as a multiple of 7 plus 
one leftover. However, only the equality 38 = 7 × 5 + 3, coming from the fifth line of the complete 
table, corresponds to the Euclidean division of 38 by 7, equality that we suggest to be called the 
real proof of the Euclidean division operation (instead of “the fundamental relation of the division”, 
found in some of the analyzed textbooks). 
The following activity contemplates, in the same context and with the same division, situations in 
which the solution is sometimes the quotient, sometimes the remainder, and sometimes it is neither 
the quotient nor the remainder. One should also notice the non-unique answer to item (b). 
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Activity C: There will be a field trip for the 123 students of the 4th grade students and their 7 
teachers. The school intends to rent buses with capacity for 55 passengers. 
(a) If everyone confirms to take part in the trip, how many buses should be rented? 
(b) How many unconfirmed persons are necessary for all buses to be full? 
(c) In this case, how many buses should be rented? 
The following activity contemplates, in the same problem, different strategies (Euclidean division 
or multiplication), and can be solved with different operations as well as aiming to contemplate one 
of the abilities of BNCC already mentioned. 
Activity D: Teacher Carlota has 123 marbles to be distributed among 6 groups of students. 
(a) Is it possible for the groups to get the same amount of marbles? How can we find it out? 
(b) How many more marbles should the teacher have so that all of them were distributed among the 
groups? 
The following activity contemplates the meaning of measure of the division and also a situation for 
which the result is neither the quotient nor the remainder of the Euclidean division and can serve to 
stimulate mental strategy. 
Activity E: Juliano gave R$ 35,00 to his 9 nephews to buy a snack, but everyone wanted a popsicle. 
Since each popsicle costs R$ 3,00, one wonders 
(a) Is the money enough for each nephew to buy a popsicle? 
In the affirmative case: 
(b) Was there any money left?  
(c) How much was left? 
(d) Would the money be enough as well to buy popsicles for Uncle Juliano and Aunt Mary?  
Final considerations 
In this work we reflect on the Euclidean division in the early grades of Elementary School, 
discussing this theme from the official documents and the analysis of six collections of textbooks 
that were approved in PNLD Program. 
The analysis of the textbooks showed that, in many instances, the guidelines of the official 
documents were not followed. It also showed that the content “division in N”, although naturally 
appearing in the students’ daily life, is not treated in this way in textbooks, and the convention for 
the term “division” is not properly emphasized, namely, splitting in equal parts with as little 
leftover as possible. 
Believing that the nonzero remainder must be approached since the first contacts of the student with 
the concept of division, we present proposals of activities that contemplate and emphasize the 
different roles of the remainder and encourage the argumentation and mathematical thinking, 
aspects which are also suggested in the official documents. 
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AREA FORMULA DEDUCTIONS FOR PLANE FIGURES IN 
TEXTBOOKS 

FRANCIELE MARCIANE MEINERZ AND LUISA RODRÍGUEZ DOERING 

 
ABSTRACT 
In this paper we present an analysis on the deduction of formulas for calculating areas of plane 
figures in some selected textbooks. Our book analysis is guided by the questions suggested by 
Symposium B: Deductive Reasoning, Arguing and Proof in Textbooks. The analysis showed that 
some books only present the formulas for calculating areas of plane geometric figures, immediately 
after some numerical example, without any kind of justification, while the others present 
inconsistencies and incomplete arguments for the proofs. We offer some suggestions of activities and 
complements to the analyzed texts that may contribute to the development of the deductions 
presented by the authors, and an excerpt of a successful teaching experiment, where students 
developed arguments to deduce the formulas for calculating areas of plane figures using 
composition and decomposition of simpler plane figures. 
KEYWORDS: Mathematical Argumentation; Textbook; Area of plane figures. 
 
Introduction 
In the International Congress on Mathematics Education ICME 13 there were reports that in many 
countries an emphasis on proof is reappearing in mathematics curricula. 

"There is international recognition of the importance of reasoning and proof in students’ learning 
of mathematics at all levels of education, and of the difficulties met by students and teachers in 
this area. Indeed, many students face difficulties with reasoning about mathematical ideas and 
constructing or understanding mathematical arguments that meet the standard of proof. Teachers 
also face difficulties with reasoning and proof, and existing curriculum materials tend to offer 
inadequate support for classroom work in this area." (Thematic Study Group 18 Reasoning and 
Proof in Mathematics Education – ICME 13, July 2016) 

Therefore, it is important that textbooks support this tendency. Stylianides (2009) remind us the 
relevance of textbooks and their analysis in order to develop activities of reasoning-and-proving 
(RP) in the classroom. 

“The studies that examined how mathematics textbooks influence mathematics instruction used 
different methodological techniques and offered different kinds of evidence, but the bottom line 
of these studies was that mathematics textbooks have significant influence on students’ 
opportunities to learn mathematics in many classrooms [...] Although mathematics textbooks can 
play an important role in the opportunities that students have to engage in RP, to date, we lack 
knowledge of how RP is promoted in contemporary mathematics textbook series.” 
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Since 1996, Brazil has the Programa Nacional do Livro Didático1 (PNLD) that selects and 
distributes, each year, textbooks to public schools; therefore, frequently, public school teachers 
have in their classroom a mathematics textbook that has probably not been chosen by them, but it is 
the only one available to their students. So it is also important to verify if the books approved by the 
PNLD include adequate support for the development of the mathematical argumentation and 
reasoning. 
According to the Parâmetros Curriculares Nacionais2 (PCN), geometry "is a fertile field of 
problem situations that favors the development of the capacity to argue and construct 
demonstrations" (Brasil 1998); consequently, we investigate how textbooks deal with one of the 
first “proofs” of basic geometry:  the deductions of the formulas for calculating the area of some 
plane figures. We analyze only textbooks accepted by PNLD. In the books we analyze, we are 
interested in answering some of the questions suggested in Symposium B (Deductive Reasoning, 
Arguing and Proof in Textbooks): Do textbooks include contexts, contents, results that meet the 
standard of proof? If yes, is the arguing appropriate for students at the proposed level? Is it correct?  
We begin this article presenting and commenting briefly on how the argumentation and teaching of 
geometry appear in the official documents, as well as justifying our choice of this theme through 
other researches. In the sequence we present an analysis of how the deductions of the formulas for 
the calculation of area of plane figures appear in some textbooks accepted by the PNLD, permeated 
by suggestions of activities, or complements to the text that could contribute to the development of 
the deductions presented in these books. Afterwards, we present an excerpt of the Meinerz (2015) 
undergraduate final paper, which was successful in a teaching experiment where students developed 
arguments to deduce the formulas for calculating areas of plane figures using composition and 
decomposition of some plane figures. 
Geometry, argumentation and official documents 
In recent years, the importance of mathematical argumentation in the classroom has gained 
prominence in Brazil, being present in important documents about mathematics teaching, such as 
the PCN and the Base Nacional Comum Curricular3 (BNCC). It is one of the general objectives for 
teaching mathematics in Elementary Education that students are presented with situations that 
favour the process of "accurately describing, representing and presenting results and arguing about 
their conjectures, using oral language and establishing relations between it and different 
mathematical representations" (Brasil 1997). Also stating the importance of mathematical 
argumentation in the classroom, BNCC defines that mathematics teaching should propose an 
understanding of the world and social practices, 

"qualifying the insertion in the world of work, which needs to be sustained by the capacity for 
argumentation, security to deal with problems and challenges of diverse origins. Therefore, it is 
fundamental that teaching be contextualized and interdisciplinary, while at the same time 
pursuing the development of the capacity to abstract, to perceive what can be generalized to 
other contexts, to use the capacity for imagination" (Brasil 2015). 

Moreover, the PCN mentions that mathematics has the role of arousing curiosity and instigating the 
ability to generalize, project, predict and abstract, favouring the development of logical reasoning. 
The importance given to the development of reasoning is directly connected with justification and 
argumentation, and such concepts are related to the idea of learning mathematics with 
understanding, and not simply by memorizing formulas or methods. 

                                                                            
1 The Programa Nacional do Livro Didático (PNLD) is Brazil´s textbooks assessment program, which 
includes mathematics and selects the textbooks that are freely distributed by the Brazilian Ministry of 
Education. 
2 Parâmetros Curriculares Nacionais are the Brazilian standards for the first nine years of Elementary School. 
3 Base Nacional Comum Curricular establishes the minimum curriculum that will soon guide all Brazilian 
schools. 
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Despite all the importance given to the mathematical argumentation in the classroom in the official 
documents, studies show that the involvement of students in activities related to the development of 
argumentation are not usual in classrooms (Nunes & Almoloud 2013). In fact, in addition to the 
students’ not being involved in activities related to argumentation, students also often do not have 
the opportunity to be involved in the teaching of geometry, which boils down to the teaching of 
measures, however "it is a fact that geometric questions tend to arouse the interest of adolescents 
and young people in a natural and spontaneous way. In addition, it is a fertile field of problem 
situations that favors the development of the ability to argue and build demonstrations." (Brasil 
1998). According to the PCN 

"Geometry has had little prominence in mathematics classes, and its teaching is often confused 
with that of measures. In spite of its abandonment, it plays a fundamental role in the curriculum, 
in that it enables the student to develop a particular type of thought to understand, describe and 
represent, in an organized way, the world in which he lives. It is also a fact that geometric 
questions tend to arouse the interest of adolescents and young people in a natural and 
spontaneous way. In addition, it is a fertile field of problem situations that favors the 
development of the ability to argue and build demonstrations." (Brasil 1998) 

Teachers sometimes fail to use classroom demonstrations and argumentation because they do not 
feel comfortable with formal mathematical language, but it is important to emphasize that in school, 
when it comes to developing mathematical thinking with the student, often the most important is 
not the demonstration itself, but rather the process of recognizing that an argument made for a 
particular case can be generalized, and then making use of generic thinking to express such a 
generalization, i.e., making use of a representative of a generic element of a set, and not of 
particular elements or cases, all in oral or written language, using mathematical symbology or not. 
(Hanna 1995). We think it is important for students to be encouraged to routinely argue in math 
classes, turning it into a natural process and that wherever possible, the teacher should choose the 
so-called demonstrations that explain rather than just demonstrate. (Hanna 1995). The rigor of 
mathematical representation (formal mathematical language) must be gradually worked out with the 
student over the years (D'Amore 2007). 
According to BNCC, one of the objectives of geometry knowledge in elementary schools is for 
students to be able to observe the equivalence of area of plane figures, calculating "areas of figures 
that can be decomposed into others, whose areas can be easily determined, such as triangles and 
quadrilaterals." (Brasil, 2017). Still, it is said that developing the idea of equivalence helps students 
in the development of mathematical thinking. 
 Geometry is not prioritized in basic education. Problems involving figures or physical space "tend 
to be approached in the numerical or algebraic pathways, with the abandonment of procedures more 
proper to geometric thinking. The teaching of geometry, when it occurs, is reduced to the 
calculation of angles, lengths, areas and volumes through the application of formulas that are not 
discovered or verified, and to the algebraic representation of the locus in the Cartesian plane" 
(Búrigo 2005). 
Meinerz (2015) carried out a mathematical investigation in the classroom, in which the students 
were invited to develop arguments about the formulas for calculating areas of plane figures using 
the composition and decomposition of these figures. In this work it was possible to notice an 
evolution in the students' argumentations. Initially the students presented very little elaborated 
justifications, and usually orally. As students were being encouraged to justify their statements, they 
began to present written arguments and to form fairly complete arguments. 
Textbooks analysis 
In this section we analyze how the formulas for the area calculation of some plane figures are 
presented in some textbooks, restricting our attention to the classic figures that appear in all 
textbooks: rectangles, squares, triangles, parallelograms, trapezoids and lozenges. We observe that 
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this content appears in books of different levels, namely, of the 6th, 7th, and 8th years. We then 
selected 5 textbooks (Table 1) approved in the 2011 and 2017 PNLD, among them Matemática 
Bianchini and Projeto Teláris, which are in the list of the PNLD most distributed books in Brazil. 
Our interest is to answer some questions suggested by symposium B, mentioned in the introduction, 
and for this we look at how these books present the formulas for calculating the area of the selected 
plane figures: whether there is any kind of deduction, or whether there are only given examples, 
followed by the formulas; if there happens to be a deduction, we verify if it is sufficient, if it covers 
all cases, if it is correct, and if the language used is adequate and coherent. Throughout our analysis 
we present complements for some arguments, aiming to complete and correct them. In addition, we 
offer suggestions for activities that illustrate the need for certain assumptions in some of these 
deductions. 
 

Titles Authors PNLD 
Matemática Bianchini 6   Bianchini 2017 
Matemática Bianchini 7  Bianchini 2017 

Projeto Teláris Matemática 6 Dante 2017 
Projeto Araribá: Matemática 8º ano Leonardo 2017 

Matemática e Realidade 7 Iezzi, Dolce e Machado 2011 
 

Table 1: Books approved by PNLD and analyzed in the research. 
In our analysis we present the formulas for geometrical figures in the following order: rectangle, 
square, triangle, parallelogram, trapezoid and lozenge, which is the order in almost all analyzed 
books. 
Rectangle and square 
Luiz Roberto Dante, in his 6th year book of the Teláris Collection, shows a rectangle with 5 cm of 
base and 3 cm of height divided into squares of 1 cm² and states that if we count the units of area 
we will have 15 squares, thus an area of 15 cm². He still makes a relation with multiplication, 
asking the reader to note that 5 × 3 = 15. However, the author does not explicit that we have five 
columns, with three squares in each one, which would facilitate the generalization of the formula. 
The author generalizes directly, just stating that it is possible to calculate the area of any rectangle 
by multiplying the measures of the base and the height. 
Bianchini, in his 6th year book, presents a rectangle of dimensions 7 cm by 2 cm, makes the relation 
with the rows and columns, as can be seen in Figure 1 and generalizes directly. It is important to 
emphasize that we verified the corresponding teacher's manual, where we also could not find any 
justification for the generalization of the formula of the area of the rectangle. We note that in the 
decomposition of the rectangle, different nomenclatures appear for the same definitions: the author 
names the dimensions of "rectangular region length" and "width of that region", but when he writes 
the rectangular region area formula, he uses the terms "base" and "height measurement", which had 
not appeared previously at any point in the development of the example - and confuse the students. 
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Figure 1: on the left, an excerpt from Bianchini- 6ºano (p. 296) and its translation on the right 
In the book of Projeto Araribá for the 8th year, the author presents an example of a rectangle, 
measuring its area by counting squares, without explicitly explaining the relation of multiplication 
with rows and columns. We verified that in the 6th year book, where the content of area of 
rectangles and squares is introduced, there is also no mention of the relation of the multiplication of 
rows and columns with the area calculation. This book only gives an example and states that one 
can calculate the area of a rectangle multiplying the measure of the base by the height measurement. 
In the book Matemática e Realidade for the 7th year, the author first recalls how we can calculate 
the area of a rectangle and a square, stating that this subject was already worked out in the 6th year. 
It shows a rectangle with a grid pattern, with base of 4 cm and height measuring 3 cm, and states 
that its area is 12 cm², because of the multiplication (3 cm x 4 cm = 12 cm²), but does not address 
the counting of squares. In the book of sixth year, the author addresses the counting of squares, but 
does not explicitly state the columns and lines to justify multiplication. After the example, it 
mentions that "For any rectangle, the area is the product of the measure of the base by the 
measurement of the height". 
We believe that the authors could offer activities (at least in the teacher’s manuals) to allow 
students and teachers to do the deductions together in the classroom, and then justify that a 
rectangle based on b units and height measuring a units can be divided into b columns, with one 
unit width, and in a rows, also with unit width. Thus, the rectangle would be formed by b columns, 
with a squares in each, and therefore by a total of b multiplied by a squares. Since this is an 
argument that refers to the idea of multiplication, a concept supposedly appropriated by the students 
at this stage, and fundamental for the deduction of the formula, it can’t be omitted. In omitting this 
argument the authors lose the opportunity to develop the generalization of students’ thinking. This 
argument is valid only for the integers and would be a good preface to later extend the formulas to 
rational and real measures, making use of the concept of these numbers. 
All authors declare the square to be a particular case of the rectangle, all sides having the same 
measure, and the area is calculated by multiplying the measures of its sides. In the books of the            
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Projeto Araribá and Teláris Collection, the formula of the area is presented as a power, since both 
sides have the same measure: l × l = l2. 
Parallelogram 
The four authors transform the parallelogram into a rectangle through decomposition and 
composition of plane figures. In Figure 2, we can observe the decomposition made by Dante in the 
book of the Teláris Collection; in this case, it is interesting to observe that the author is concerned 
with emphasizing the right angle symbol in the picture to argue that we will indeed have a rectangle 
after the composition. We think that, in addition, it would be important to make it explicit in the 
text that the cut is perpendicular, so that students can understand the argument easier. Another 
important point we note is that the author is careful to write that when we translate a part of a plane 
region, the area of the figure does not change, that is, we get an equivalent figure. Bianchini 
presents an example of a parallelogram with numerical measures for its sides, and decomposes it, 
using a square grid. After that he generalizes, transforming a parallelogram with generic measures 
into a rectangle, showing the right angle in the triangle cut-out to be transported to the formation of 
the rectangle. The author argues that the two figures are equivalent and that it is always possible to 
transform a parallelogram into a rectangle of the same base and the same height, so one can 
calculate its area multiplying the measure of the base by the height measurement. 

 

 
Figure 2: on the left, an excerpt from Teláris Collection- 6ºano (p.269) and its translation on the right 

Unlike Dante and Bianchini, in the collections Matemática e Realidade and Projeto Araribá, 
although the figure is decomposed, it is not mentioned that the cut must be made perpendicular to 
the base and also the right angle symbol is not presented in the pictures, so it is not clear that the 
formed figure is, in fact, a rectangle. In addition, in both books, only numerical examples appear, 
followed by formulas, generalizing directly. We had access to the teacher's manual in the 
Mathematics and Reality collection, where no suggestion of deduction is made to the teacher. 
Triangle 
In calculating the area of a triangular region, Dante uses an acute triangle to form a parallelogram 
with measurements of the same base and the same height as the triangle. He states that the triangle 
has half the area of this parallelogram without arguing that this is due to the fact that the 
parallelogram is formed by two identical triangles, and therefore the area of one of them is obtained 
multiplying base by height, and then dividing by two. The author only presents the figure and 
formula for a right triangle and for an obtuse triangle. It is important to note that in the teacher's 
manual, the author only states the same as in the student's book: that the triangle has half the area of 
the parallelogram. 
Bianchini presents the deduction for the formula for calculating the area of the triangle (Figure 3), 
starting from two triangles with equal base and height measures, relative to these bases, also with 
equal measures, that is, two equivalent triangles. But it uses implicitly, in the sketch, as well as in 
the argument, that they are congruent triangles. And he concludes that with these two triangles "it is 



 Area Formula Deductions 

 99 

possible to compose a parallelogram". This may lead the students to think that two triangles with 
the same base and the same height are always congruent, which is not true. Also, if the triangles are 
not congruent, they do not form a parallelogram. In the teacher's manual there is no additional 
comment besides what is presented in the student textbook. 

 
 

Figure 3: on the left, an excerpt from Bianchini- 7ºano (p. 307) and its translation on the right 
In the Matemática e Realidade book, the authors present an interesting example in which they 
assemble a parallelogram duplicating a triangle with base measuring 5 cm and height measuring 3 
cm, and argue that the parallelogram is formed by two equal triangles, and therefore, the area of one 
of the triangles is obtained by dividing the area of the parallelogram in two. Again, the authors do 
not include a generic figure, they merely state that the area of the triangle can always be calculated 
through the product of the base by height, divided by two. Thus, the authors state, by presenting 
only one example, that the same thing always happens, but they do not justify it. In the Araribá 
Collection, the authors present a deduction that is easy for students to understand, with generic 
dimensions and good argumentation, but above a square grid, which may compromise the 
generality of the argumentation. 
In order to complement these deductions, we suggest two activities that can be developed with the 
students and that lead to the justification of the deduction of the formula for the calculation of the 
area of the triangle. The first one is directed to an observation we made at our Bianchini analysis: to 
form a parallelogram using two triangles, it is necessary for these two triangles be congruent, that 
is, it is not enough for them to have the same measure of the base and the same height 
measurement. Thus, we suggest that teachers invite students to form parallelograms using two 
triangles of the same base and same height, but not congruent. In Figure 4, we present several 
examples of triangles of the same base and height, which are not congruent. 

 
Figure 3: Examples of triangles of the same base and height, which are not congruent. 

Once we have verified that triangles of the same base and height, but not congruent, do not 
necessarily form a parallelogram, the students should be invited to test the composition of a 
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parallelogram with two congruent triangles. Students will realize that they will always get a 
parallelogram, regardless of the congruent side chosen. In addition, when using two congruent 
scalene triangles, it is possible to observe that we can form three parallelograms, with different 
bases and heights, but of the same area. 
Trapezoid 
Dante duplicates the trapezoid and states that whenever we duplicate it, we may use the two 
identical trapezoids to form a parallelogram with base measuring B + b (larger base added to the 
smaller base). By multiplying the trapezoid’s base by its height, the area of the parallelogram is 
obtained, and because they are two equal regions, the area of the trapezoid is obtained by dividing 
the area of the parallelogram by two: . Bianchini and the authors of the Araribá Project 
argue in the same way as Dante.   
In the book Matemática e Realidade the authors deduce the formula using a numerical example: 
decomposition of the trapezoid into two triangles through a cut along one of its diagonals. One of 
the triangles obtained has as a measure of the base the largest base of the trapezoid and the other the 
smaller base of the trapezoid and both have the same height. To conclude the calculation they state 
that the trapezoid’s area is obtained by summing the areas of the two triangles. It is important to 
point out that there is a typo or revision error in the example: when the authors make an observation 
about the "major" and "minor" bases of the trapezoid it is written "diagonal maior" and "diagonal 
menor", however these two measures were not used to set the example. Also, in the conclusion, 
which was made without argument, the authors mention the arithmetic mean, which has not been 
mentioned before, and which could cause difficulties for the students, besides being an unnecessary 
use of this nomenclature in the case described. 
Lozenge 
The last plane figure analyzed is the lozenge. The argument presented in the Telaris Collection 
(Dante), consists of decomposing a lozenge into four triangles, obtained with cuts along the 
diagonals, and joining the triangles with another identical lozenge to form a rectangle with base 
measuring the same as smaller diagonal and height measuring the same as larger diagonal. Thus, 
since two lozenges were used, the area of one of the lozenges is obtained multiplying the greater 
diagonal (height of the formed rectangle) by the smaller diagonal (base of the formed rectangle) and 
dividing by two. An important point that the author does not clarify, neither through the right angle 
symbol nor through the explanation in the text, is that the triangles obtained are right triangles, 
which is fundamental to obtain the rectangle that leads to the area of the lozenge. 
Unlike Dante, Bianchini makes explicit both in the text and in the drawing that the triangles are 
right. The rest of the argument is similar to that of Dante, and encourages the generalization of his 
deduction. In the book Matemática e Realidade, again there appears only a numerical example, 
which consists of dividing the lozenge into four equal right triangles, and defines that the area of the 
lozenge is the sum of the areas of the four triangles. Again the generalization is made without any 
argument. In the Projeto Araribá, the authors decompose the lozenge and transform it into a 
rectangle. The rectangle they form is based on the smaller diagonal of the lozenge and its height is 
the larger diagonal, divided in two. Therefore, it is possible to note that the area of the lozenge is 
obtained multiplying the greater diagonal by the smaller diagonal, and then dividing by two. The 
author arguments with generic measures but, again, on a square grid. 
Example of an activity 
To illustrate the use of argumentation in the classroom we present a description of a teaching 
experience with students of the 8th grade of a public school in Porto Alegre conduct by first author 
in her undergraduate final paper Meinerz (2015), where twenty-nine students were divided into trios 
or duos. During this research students were encouraged to create conjectures and argue about them 
using the composition and the decomposition of plane geometric figures to obtain formulas for the 
calculation of their areas. The practice was carried out in four meetings: in the first meeting the 
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researcher applied an initial questionnaire to evaluate the students' previous knowledge. On the 
second and third meeting, the groups were invited to conjecture and argue about their conjectures. 
Each group received cut-outs of the figures to be worked on coloured paper (rectangle, triangle, 
parallelogram, trapezoid and lozenge) and they were invited to compose these figures with other 
equal figures, or decompose and compose another figure whose area formula they already knew; the 
activity was finished with an argument on the deduction of the new formula obtained. In the final 
meeting, the researcher proposed an activity in which the groups should formulate deductions and 
argue about them, and then present them to their colleagues with a poster. Each group was 
responsible for a plane geometric figure. 
The argumentation presented by one of the groups participating in the research was developed in a 
succinct and organized way in the document delivered to the researcher as well as in the poster 
presented to the colleagues. We observed that the group presented their arguments using natural 
language, of easy comprehension for colleagues (Figure 5). As the students' algebraic language was 
still somewhat precarious, we observed that the students did not use the parentheses to indicate the 
multiplication of (B + b)  A. Their attention was drawn to this, and for the presentation they 
inserted the parentheses and discussed the importance of its use. 

 
Figure 4: Argument presented by the students on the deduction of the formula for calculating the trapezoid 

area and its translation. 
Final Considerations 
In this work we show that the official documents (PCN and BNCC), as well as several researchers 
in the area, point to the importance of the teaching of geometry and the development of 
argumentation in the classroom. We have also pointed out that geometry is a fertile and propitious 
field for the introduction of argumentation in the classroom. Within plane figures content the 
argumentation can be facilitated by the use of composition and decomposition of figures, allowing 
students the opportunity to conjecture, test examples and generalize more easily, since the study can 
initially be concrete, rather than abstract. 
Through the analysis of textbooks approved by the PNLD, we find that some books only present the 
formulas for calculating areas of plane geometric figures immediately after some numerical 
example, without any kind of justification, persuasion or argumentation. In this way, they lose the 
opportunities to generalize the ideas used in examples, or in particular cases, that could lead to the 
deduction of the formulas. We observe that books that develop arguments to present area formulas 
often present inconsistencies or inaccuracies, such as incomplete arguments, different 
nomenclatures, and language beyond the reach of the students, which can confuse the students. We 
also note that in the teacher's manuals there are no proposals to encourage students in the classroom 
to develop their own justifications and deductions. 
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During our analysis we presented suggestions to complement the arguments, using justifications 
that we think to be appropriate for the students and that validate the argumentation. We believe that 
in order to encourage classroom argumentation, we need textbooks that present proposals that 
involve students and encourage them to conjecture, to justify their conjectures, and to deduce them. 
We also believe that the teacher’s manual should present deductions of formulas for the calculation 
of areas of plane figures in a more complete way, and without inconsistencies, with careful writing 
and with the suggestion of activities that complement the deductions in the teacher's manual. 
We conclude by recalling that "the most important challenge to mathematics educators in the 
context of proof is to enhance its role in the classroom by finding more effective ways of using it as 
a vehicle to promote mathematical understanding" (Hanna 1995). We stress that the demonstrations 
can be carried out without the use of mathematical symbolism, so that there is a greater 
understanding and learning of the students. 
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TEACHER VIEWS ABOUT ARGUMENTATION AND 
MATHEMATICAL PROOF IN SCHOOL 

LILIAN NASSER AND CARLOS AUGUSTO AGUILAR JÚNIOR 
Abstract 
This article relates a research about argumentation and proof in the mathematics classroom and the 
teacher views on the challenge of developing in students the ability to argue and prove in 
mathematics. The study, conducted in two stages, intended to find out how teachers appreciate and 
accept the various levels and types of argumentation presented by secondary school students. First, 
a form with tasks, requiring logical-deductive reasoning, was given to students. In the second stage, 
some selected responses from this form have been categorized according to the types of proof 
established by Balacheff (1988) and by Harel and Sowder (1998) to assemble the form applied to 
teachers, following a methodology undertaken by Hoyles (1997), in U.K.  In this form, teachers 
evaluated the selected answers, justifying the marks given. Results show that teachers have great 
inclination for arguments approaching to the formal proof, rejecting incipient and ingenuous 
attempts of argumentation. We also bring to the discussion the importance of textbooks for the 
development of a culture of argumentation and mathematical proof in the classroom, considering 
that this teaching material is one of the main technologies used in class, if not the only one available. 
 
Introduction 
This research has been carried through in the scope of a master degree in mathematics teaching, 
whose object of research and analysis was the approach of argumentation and proof in the 
mathematics classroom at grades 8th and 9th. We intended to promote a discussion about the 
importance and the challenge of developing, in the classroom, activities that stimulated in the pupils 
the construction of abilities in arguing and proving in mathematics.  Such construction dialogues 
with the proposal to develop the deductive reasoning at school, printed in the Brazilian curricular 
parameters (PCN, in Portuguese): “mathematics intervenes strongly with the formation of 
intellectual capacities, the structuring of the thought and the development of pupil’s deductive 
reasoning” (Brasil 1997, p. 15). 
We believe that this proposal only becomes viable and successful if teachers are, in fact, engaged in 
this kind of approach, which needs to be constructed from diversified activities that stimulate 
students’ deductive reasoning. This must be reached through the resolution of problems that 
mobilize deductive thinking, going beyond the mere mechanist work of problem solving and 
answering questions just aiming to the setting of results (theorems, proposals, properties and 
formulas), by means of repetitive exercises. 
Nowadays, we live in Brazil a process of curricular centralization, which intends to unify, in 
national scope, the curricular contents to be taught in the whole school network. Although the 
criticism, which is out of the target of this article, on the process of construction of the National 
Common Curricular Basis (BNCC), foreseen to invigorate from 2019, we detach the quarrel 
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contemplated in the proposal of the BNCC on the need to develop the deductive reasoning in the 
mathematics teaching-learning process, when establishing that 

the student must be motivated, in his schooling lifetime, to question, to formulate, to test and to 
validate hypotheses, to search counter examples, to model situations, to verify the adequacy of 
the answer given to a problem, to develop languages and, as a consequence, to construct ways of 
thinking that lead him to reflect and to act in a critical way about the questions faced daily. 
(Brasil 2016, p. 131) 

Moved by these ideas, and also considering the central role of the teacher in the development of 
abilities and competencies in the field of mathematical reasoning, argumentation and proof, the 
inquiry was undertaken in two distinct, but complementary steps. The investigation intended to 
determine how teachers appreciate and accept the various levels and types of argumentation 
presented by secondary school students (Fundamental Level II - final series and high school) to 
questions that explored logical-deductive reasoning (Aguilar Júnior 2012; Aguilar Júnior & Nasser 
2014). 
At the first stage of the inquiry, a form has been designed, with questions demanding from the 
participant students a deeper logical-deductive reasoning, through argumentation and justification. 
The questions went beyond the simple application of known results and calculations and have been 
applied in three public schools for 124 students of 8th and 9th years of secondary school, from 12 to 
17 years of age. The conclusion was that the level of argumentation of this group is still naive and 
informal. The great majority of the given answers presented empirical character, since the 
verification of the truth was based on examples, what Balacheff (1988) calls naive empiricism 
(which was freely translated as natural empiricism in the research report). 
For the second stage, another form has been constructed, directed to the teachers. It was composed 
by selected answers presented by the students at the first stage, which had been analyzed according 
to the models and types of proof defined by Balacheff (1988) and Harel & Sowder (1998).  This 
second form was submitted to the evaluation of 59 teachers of secondary school, following a 
methodology undertaken by Hoyles (1997), in U.K. 
In this questionnaire, each teacher participant of the inquiry evaluated the answers given by the 
pupils, attributing grades from 0 to 10 and justifying the marks given. In the analyses carried 
through, it could be verified that teachers have great inclination for the arguments approaching to 
formal proof.  Incipient and ingenuous proposals of argumentation had not been so well valued, and 
the pragmatic answers (Balacheff 1988) had been considered unacceptable as proofs, under the 
point of view of the mathematical rigor. Data analysis, that also took into account 10 undergraduate 
students, who took part of the application of the form in a workshop, indicates that the teachers in 
this group, in general, are not inclined to promote the development of activities in the classroom, in 
order to construct abilities to argument and to prove in mathematics.  Their preference, in terms of 
evaluation of student answers, is for arguments closer to the Balacheff (1988) model of proof, 
concerning the rigorous and formal proof, supported, accepted and practiced in the Academy. 
The research pointed that pupils better undertake their arguments and succeed in proving the 
mathematical proposals more efficiently when they are faced with activities, curriculum and teacher 
prepared for the construction of this ability/competency. This way, it is relevant that the teacher 
stimulates the contact with this kind of activities. 
Within the scope of public policies focused on Brazilian secondary school, the National Textbook 
Plan (PNLD, in Portuguese) allocates textbooks of the various curricular components in the public 
schools of the municipalities, states and the Union. These textbooks are previously selected by a 
group of specialists, and the teachers have the power of choice. Every student at the public network 
receives the textbooks chosen for free.  Although there may be criticisms about formulations in 
some textbooks, these are the main tools for the teachers work in the classroom, important reference 
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material for students and essential for building national identity, as already pointed out in the 
literature (Lajolo 1996; Ribeiro 2003; Megid & Fracalanza 2003; Horikawa & Jardilino 2010) 
Beyond bringing this discussion to the core of the teacher’s role in the construction of pedagogical 
practices and didactic sequences that allow the foment and the development of the students 
logical-deductive thinking, we understand that an important debate to be carried through is about 
the role of the textbook in this proposal, since it acts as the main support material for the teacher in 
the preparation of the lessons. 
Textbooks can help the teachers, since they act as guides for the educational practice. But, even in 
the cases where the reasoning and the argumentation are emphasized in mathematics textbooks, we 
do not believe that the majority of the Brazilian teachers adopt this type of activity in his/her 
practice. 
In this article, we focus on the issues carried through in the scope of the research of Aguilar Júnior 
(2012), on contributions from literature about the role of the textbook in the construction of a 
pedagogical proposal that foments the development of the logical-deductive reasoning through 
argumentation and proof and on some considerations about the textbook. 

The research with teachers and students about mathematical argumentation and proof 
The research, as argued in the introduction, aimed to understand how the mathematics teacher at 
secondary school evaluates the students reasoning, when submitted to questions that demand 
argumentation and the construction of demonstrations (proofs) of mathematical statements. For this, 
we carried out a literature revision, to define a method to analyze the students’ answers. The work 
is, then, based on the theoretical framework proposed by Balacheff (1988) and by Harel and Sowder 
(1998). 

Sowder and Harel (1998, pp. 671-673), in a research carried through in the United States, describe 
the kinds of proof presented by pupils in a test, classified as: externally based proof schemes, 
empirical proof schemes and analytical proof schemes. The externally based proof scheme 
considers “both what convinces the student and what the student would offer to persuade others 
reside in some outside source”.  On the other hand, the empirical proof scheme is described as one 
where “justifications are made solely on the basis of examples”. Concerning the analytical proof 
scheme, the researchers remark that Mathematics teachers “probably regard the analytic proof 
schemes as giving the ultimate types of justifications in mathematics”.  
Balacheff (1988), in the scope of his PhD thesis, carried through a research with French students, 
identifying two basic types of proof: the pragmatic type and the conceptual type. For Balacheff 
(1988, p. 217), a pragmatic proof appeals to validity tests, search for regularities, examples or 
drawings to justify one statement, called by the author as “action resources”, whereas the 
conceptual proof does not appeal to such resources at the moment to formulate the involved 
properties and the possible relations between them. According to Pietropaolo (2005, p. 94), the 
cognitive structures, the knowledge and the language used establish the differences between these 
kinds of proof. 
In order to better design his research, Balacheff (1988) distinguish four modalities of proof: naive 
empiricism, crucial experiment, generic example, and thought experiment. These four unfoldings 
originate from the existing movements between the kinds of proof: the naive empiricism and the 
crucial experiment rest in the field of the pragmatic proof, and the thought experiment inhabits in 
the field of the conceptual proof.  The generic example transits between the two types, given that 
the generic example “consists in the explanation of the reasons that validate a property that shows a  
generality, making use of a particular representative” (Gravina 2001, p. 67). 
After the reflection on the correlate literature, we could design the research, which was 
structuralized as follows:   
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Phase 1: elaboration, application and analysis of forms with questions requiring argumentation 
and proof, directed for the pupils of grades 8th and 9th;   
Phase 2: elaboration, application and analysis of forms for the teachers, based on the results 
collected in phase 1;   
Phase 3: analysis and interpretation of the data. 

In phase 1, reiterating what was said in the introduction, we undertook the application of the 
questionnaires in 3 schools, being two municipal schools (nominated by EM1 and EM2) and a 
federal one (called EF). The following table illustrates the distribution of the samples in each school 
unit, which had their names preserved. 
Table 1: distribution of the students in Phase 1 of the research 

Grade / School  EM1 EM2 EF 

8th grade - 30 students  
(12 to 16 years old)   

- 

9th grade 38 students  
(14 to 16 years old)  

28 students  
(14 to 17 years old) 

28 students  
(14 to 15 years old) 

In general, pupils concentrate in presenting answers based on examples or experiments, being 
attached to the question of testing some examples to verify the validity of the affirmation, 
inhabiting, thus, in the pragmatic type of proof, in a naïve empiricism (or ingenuous). However, 
some answers had been selected to compose the form destined to the teachers (Phase 2). 
 

 
 

Figure 1: Examples of questions in Phase 1 
Figure 1 shows two questions that had presented the most interesting answers for our debate, with a 
variety of kinds of proof. The first item explored the knowledge on arithmetical properties of the 
whole numbers (sum of three consecutive whole numbers results in a multiple of 3 - arithmetical 
context).  Question 3 explored the knowledge about the parallel lines theorem (geometric context).  
The following pictures illustrate some of the answers included in the teachers form. 

(Translation: Verify if the following statement is TRUE or FALSE, 
justifying your answer: “the sum of three consecutive numbers is a 
multiple of 3.”) 

(Translation: In the following picture, r and s are parallel lines. 
Based on these informations, express  the value of angle x, in terms 
of a and b, justifying your answer”) 
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Figure 2: Students’ answers to question 1 (arithmetic context)  

 

 
 

 

Figure 3: Student’s answer to question 3 (geometric context) 

(Translation: “true, because whenever we add three consecutive numbers, if we subtract 1 from the biggest number and add it to the 
minor, we will have three equal numbers multiplied by three”). 

(Translation: “true. For example, the number 345, the addition of its algorisms is a multiple of 2, 3+4+5 = 12 is multiple of 3”).  

Translation: “drawing out straight lines c and d and creating one 3rd  parallel straight line to r and s, we can carry the measures of 
the angles such that they became opposite to x, then  x = a + b”). 
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Figure 4: Student’s answer to question 3 (geometric context)  

In a first impression of the data collected, we evidence that the level of argumentation of this 
sample is still very ingenuous and informal, considering that a good parcel of the presented answers 
could be included in a category of empiricist character, where the search of the truth was given by 
means of examples. 
We understand that the development of the ability to argue and to prove in Mathematics requires an 
intended work, that is, the lesson and the teacher must be prepared for the conduction of this task. 
By the results obtained, we can speculate that, concerning the pupils investigated in this phase of 
the research, this ability is not being developed in classroom, since great part of the pupils had 
presented only examples as arguments and justifications. 
On the other hand, in the forms of Phase 2, we identified that the teachers had applied quite 
rigorous evaluations, although we assume they do not have the habit to work under the perspective 
of the development of proof and argumentation with their pupils. This occurred even concerning 
those answers that, besides not being a mathematical proof under the point of view of the rigorous 
deductive model of argumentation and demonstration in mathematics, presented a considerable 
level of argument and reasoning, as in the answers shown in figures 2 and 3. 
We reaffirm that the work with argumentation and mathematical proof requires a change in the 
paradigm concerning the teacher posture in the mathematics classroom and, for this, beyond the 
need of contact between the teacher and this approach in his formation (initial and continued), the 
main material for the great majority of the teachers – the textbook – must be constituted of a 
repertoire that allows such work. In the following section, we will make a brief discussion of the 
literature referring to this subject. 
Argumentation and proof in mathematics textbooks 
The importance of the textbook is understood in the educational debates as a means to support the 
teaching-learning process of the knowledge systematized throughout the years. Although the 
speeches pointing that the textbook functions as a kind of “crutch” to carry the teaching work - 
passing a prejudiced and distorted idea, leading to the impression of a precarious and “limping” 
formation of the teacher - we understand that the textbook is an important tool for the socialization 
of the knowledge, historical and culturally discussed and developed in school curricula. 
Some authors emphasize the importance and the wealth of the textbook for the contribution in the 
teaching-learning process and as an important mediator of the teaching work, as well as its good use 
on the part of the teacher. According to Nuñez et al (2003, p. 1), the textbook is seen as “an alive 
source of wisdom, able to guide the development processes of the integral personality of the 
children.” Although these researchers refer to science textbooks, we can also understand that the 
textbook, in general, is considered  as a facilitator for the pupils learning, contributing in the access 
to the studied content. Lopes (2007) affirms that the textbook functions as a pedagogical material, 

Translation: “a and b are internal angles of triangle and x is an external 
angle. Then x = a + b ”. 
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essential in the process of construction of the knowledge, being a cultural product, plain of 
ideological values, beyond its specific pedagogical content of each discipline (Lopes 2007, p. 205). 
Teachers are responsible for the adequate use of textbooks, in order not to feed biased arguments, 
the book functioning as a crutch or a cane of the teacher. The protagonist of the education process is 
the teacher, and not the material/technology used in the lesson.  Romanatto (1987, p. 8) affirms that 
the didactic book still has a marked presence in the classroom and, many times, as a substitute of 
the teacher, when it should be one more of the elements to support the teaching work. The contents 
and methods used by the teacher in classroom would be in the dependence of the contents and 
methods considered in the adopted textbook. Many factors have contributed for this role of the 
textbook as a protagonist in the classroom. A book that promises everything ready, everything 
detailed, being enough to order the pupil to open the page and to solve exercises, is an irresistible 
attraction. The textbook is neither a mere instrument as any another in the classroom, nor it is 
disappearing faced to the modern media. What is being questioned is its quality. 
Lopes (2007) still recognizes the dependence of the teaching in relation to the textbook, stating that 
good books are a basic part of the quality of the education. In fact, reiterating that the adequate use 
of the book competes to the teacher, the textbook can bring, in terms of technology, important 
pedagogical functions for the process of schooling and of teaching and learning. 
The debate that we raise aims at placing the textbook in a relevant position for the teaching-learning 
process. It is an educative technology, which the teacher adopts and manipulates with the objective 
of mediating the students learning. If we take, then, the argumentation and the mathematical proof 
as goals of education and learning, it would be important that the textbooks came constructed with 
activities that stimulated this type of work in our classrooms. This debate agrees with what is 
already pointed by the Textbook National Program with respect to high school - PNLEM -, when 
affirming that 

the textbook must value the various resources of the mathematical thought, as the imagination, 
the intuition, the inductive reasoning and the logical-deductive reasoning, the distinction 
between mathematical validation and empirical validation and foster the gradual construction of 
the deductive method in mathematics. Regarding the deductive method, it is advisable to warn 
frequent deviations to be moved away. The first one is to formulate a generalization as a proven 
fact, on the basis of the verification of examples - many times one or two only. Others are to 
present very complicated proofs of some theorems, which can be postponed for posterior studies, 
or to display difficult demonstrations for intuitively evident facts. Many times, such 
demonstrations can be skipped without damage of the understanding. (Brasil 2006, p. 75) 

Lima and Freitas (2008), in a research undertaken to investigate how high school students dealt 
with some conjectures involving the set of the whole numbers, verified in textbooks recommended 
by the PNLEM the presence of activities stimulating this kind of work and reflection with the 
pupils, subsidizing the elaboration of didactic sequences towards the proposal of adopting the 
argumentation and mathematical proof at high school. 
On the other hand, Nacarato et al. (2012) discuss the role of the mathematical proof, considering 
that the character of the textbook concerning the theme argumentation and mathematical proof is 
approaching to the debate in the field of mathematics education about the importance of this 
thematic. But the classroom practice is still attached to the idea of that to know mathematics is to 
know how to make calculations and to solve problems that just require the application of 
mathematical known results (theorems, formulas, proposals and properties), affirming that “the 
classroom is still attached to the culture of the exercise, with little room for discussion, exchanges 
and negotiations of meanings, raising of conjectures and their validation” (Nacarato et al. 2012, p. 
73). 
Given the deductive character of the Euclidean geometry, many studies on textbook analysis 
(Martins and Mandarino 2014; Nacarato et al. 2012; Rosa et al. 2013) centers the research in the 
geometry activities. Martins and Mandarino (2014) had analyzed the Brazilian Textbook Guide of 
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2011, with focus in the chapters related to geometry. They concluded that the 11 collections 
evaluated from the guide, in general, had presented activities and explanations that mix pragmatic 
and intellectual justifications, emphasizing the absence of activities exploring the inquiry process, 
essential and basic in the construction of the mathematical knowledge. In the same way, the 
research of Rosa et al. (2013) also focuses on the way that the thematic of argumentation and 
mathematical proofs is presented in the chapters of geometry of the evaluated books. In this inquiry, 
three books of 8th grade had been evaluated, evidencing, in all the volumes, variations of arguments, 
going from mere justifications using examples, appealing to the visualization through figures, to 
more formal constructions, under the point of view of the rigorous mathematical proof (deductive 
demonstration). 
Some remarks 
As already pointed in Aguilar Júnior (2012), we understand the importance of providing the 
students with the contact to activities that stimulate the development of the ability to argue and to 
prove in mathematics, creating contexts and problem-situations where they are led to conjecture, to 
refute, to test hypotheses, carrying through a movement of transition from the pragmatic to the 
conceptual proof, in the terms of Balacheff (1988). 
The examples of answers obtained in the research with the pupils disclose great potentialities to 
work with the exploration of activities that lead pupils to think on the proposed questions, without 
necessarily having to appeal to calculation procedures to solve problems, but using deductive 
reasoning.  This way, agreeing to Lima and Freitas (2008, 9) this pedagogical proposal must 
“become the classic demonstration with arguments that respect the individual epistemology 
reasonable”, that is, it respects the previous knowledge of these students and the possible 
difficulties in language terms, mainly. 
Despite the necessity of the school curriculum and the formation of teachers programs valorize the 
work with argumentation and mathematical proof, as long as the textbook is, even not the main, but 
an important educative technology, it is necessary that the textbook contemplates activities that 
allow teachers to stimulate the inquiry and the development of didactic sequences favorable to this 
intention.  
Although the recommendations present in the PCN, PNLD and PNLEM and the proposal of the 
BNCC point the importance of the work directed to the development of the logical-deductive 
reasoning, necessary for the full exercise of the citizenship, we verify a lack of proposals of didactic 
sequences aiming at the work with argumentation and mathematical proof in the adopted textbooks 
in our classrooms. 
The discussion in the field of the Mathematics Education has been fundamental to rethink the use of 
the textbook and its production. To deepen the research on this subject - and to understand 
argumentation and mathematical proof as curricular contents to be explored at school - is a 
powerful way to create the culture of the argumentation in our classrooms, essential for a full 
understanding of mathematics as a language that models the reality and that provides to students the 
full exercise of the citizenship. 
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THE INTRODUCTION TO ALGEBRA IN TEXTBOOKS 
CYDARA CAVEDON RIPOLL and CARVALHO, SANDRO DE AZEVEDO 

 

ABSTRACT 
In this article, we analyze the introduction to algebraic expressions in Brazilian textbooks and in 
textbooks from other countries, taking into account the guidance on this theme in Brazilian official 
documents and focusing on what is suggested concerning reasoning, arguing and proof. 
Considering the guiding question of the Deductive Reasoning, Arguing and Proof in Textbooks 
Symposium, namely, “Do textbooks include contexts, contents, results that meet the standard of 
proof?”, we conclude that the answer is in the negative. We present, nevertheless, an activity about 
algebraic expressions that can be used in an 8th grade class which can help the development of 
generic thinking and also naturally motivate the need to prove that two algebraic expressions are 
equivalent. 
KEYWORDS: Textbook comparison. Mathematical thinking. Generic reasoning. Introduction to 
algebra. Generalized arithmetic. 
 
Introduction 
Algebra in elementary school is closely related to the development of students’ abstraction ability, 
and, hence, also to the ability of constructing simple proofs in mathematics. For example, in making 
use of symbols that represent numbers, it is possible to establish arithmetical results and justify 
them by making use of generic reasoning, that is, by means of arguments that make use of generic 
elements of some set. 
It is here emphasized that a student’s first contact with algebraic expressions should be through 
symbols representing numbers (which is called generalized arithmetic by Usiskin (1999)), agreeing 
with Vergnaud (1997) and Brazilian official documents as well as Wu (2016), who wrote in the first 
page of his book Teaching School Mathematics – Algebra: “The purpose of this chapter [Symbolic 
Expressions] is to demonstrate how one can do algebra by taking x to be just a number and turn at 
least the introductory part of school algebra into generalized arithmetic, literally.” 
We analyse the introduction of algebraic expressions in Brazilian textbooks, as well as in textbooks 
from other countries, considering guidance about this theme in official Brazilian documents. We 
also pay attention to the question suggested in Symposium B (Deductive Reasoning, Arguing and 
Proof in Textbooks) of the II International Conference on Mathematics Textbook Research and 
Development: Does the textbook help in the development of students' abstraction abilities? 
Finally, we describe an activity about algebraic expressions which aimed at the development of 
students’ abstraction ability. 

THE INTRODUCTION TO ALGEBRA IN OFFICIAL BRAZILIAN DOCUMENTS 
FOR ELEMENTARY SCHOOL 
The official document that currently guides the first nine years of primary education in Brazil 
(elementary school) regarding contents and methodologies is the Parâmetros Curriculares 
Nacionais (PCN) from 1998. In 2020, another document, the Base Nacional Comum Curricular 
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(BNCC), will become effective in all Brazilian elementary schools. Unlike the PCN, which only 
guides the teaching and learning process, the BNCC defines the set of knowledge and skills that all 
Brazilian students should develop in each year of the first nine school years. 
With respect to the teaching of algebra, in both the PCN (Brasil 1, 1998) and the BNCC (Brasil 2, 
2017), the orientation is clear: letters in algebraic expressions should always represent numbers. 
The following excerpts confirm this: 

 “Although in the initial grades some ideas of algebra may already be developed, it is especially 
in the final grades of elementary school that the first algebraic activities will appear. By 
exploring problems, the student should recognize different functions of algebra (generalizing 
arithmetic patterns, establishing relationships between two quantities, modelling, solving 
arithmetically difficult problems) and solve problems by making use of equations and 
inequalities (differentiating the concepts of parameters, variables and unknowns, and coming 
into contact with formulas).” (Brasil 1, 1998, p. 50-51, authors’ translation). 

“At this level, students must understand the different meanings of numerical variables in an 
expression, establish a generalization of a property, investigate the regularity of a numerical 
sequence, indicate an unknown value in an algebraic sentence and establish the variation 
between two quantities.” (Brasil 2, 2017, p. 226, authors’ translation). 

The emphasis given by the authors on this guidance will be clear in this article. 
Vergnaud also agrees that the use of symbols that represent numbers should be a student’s first 
contact with algebra (a level called generalized arithmetic by Usiskin 1999). In fact, Vergnaud 
(1997) comments that, with the study of algebra, student’s arithmetic understanding is improved 
and that algebra in collège should be treated as a “numerical algebra” (algèbre du numérique). He 
also points out that the understanding of the main additive and multiplicative relationships that can 
be found in elementary arithmetic problems is not yet complete for students at the beginning of the 
Lycée (Vergnaud 1997, p. 122). 
Algebra in elementary school has a strong relationship with the development of mathematical 
thinking. With respect to algebraic thinking, one can use symbols representing elements of some 
numerical set to establish or express the results of arithmetic and justify them by means of a 
generalizing reasoning; later, one can use symbols to express generalizations of arguments, 
reasoning with generic elements of a given number set, and not of particular cases, which, in this 
text, we call generic reasoning. 

“Algebra allows us to describe concise and coherent general relations (...). It is an essential tool 
for proving properties, describing patterns and solving problems. (...) For this, abstraction is 
necessary.  It frees us from contexts and particular cases.” (Martinez 2013, p.16, authors’ 
translation) 

The relation between algebra and the development of students’ abstraction capacity can be found 
both in the PCN and the BNCC: 

“The study of algebra is a very significant theme for students to develop and exercise their 
capacity for abstraction and generalization, as well as to enable them to acquire a powerful tool 
for problem solving.” (Brasil 1, 1998, p. 115, authors’ translation). 
“Teenagers develop their abstract thinking skills in a significant way when they are given 
diverse experiences involving algebraic notions in the early stages, in an informal setting, and in 
work that is coupled with notions of Arithmetic.” (Brasil 1, 1998, p.117, authors’ translation)  

“The deduction of some properties and the validation of conjectures from others can be 
stimulated, especially at the end of elementary school.” (Brasil 2, 2017, p. 221authors’ 
translation). 
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“... this field [algebra] must emphasize language development, the establishment of 
generalizations, the analysis of the interdependence of quantities, and problem solving through 
equations or inequalities.” (Brasil 2, 2017, p. 226, authors’ translation). 

In the previous excerpts, one can notice the emphasis on mathematical thinking, which involves 
generalizing, decontextualizing, conjecturing, proving and abstract thinking. 

THE INTRODUCTION TO ALGEBRA IN BRAZILIAN TEXTBOOKS FOR 
ELEMENTARY SCHOOL 
Carvalho (2010) analyses nine 8th grade textbooks approved in the Programa Nacional do Livro 
Didático41 (PNLD, Brasil 3, 2017) from the years of 2002 and 2008 on the theme “Introduction to 
algebraic expressions” (Table 1). 

Table 1: Analysis of nine textbooks in Carvalho (2010) 

                     Textbook (TB)      → 
Problem   ↓ 

TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9 

Absence of definition      X X  X 

Imprecise definition X X X X X   X  

Biggest universe of the coefficients is 
ℤ  X X   X   X 

 Biggest universe of the coefficients 
is ℚ X   X X  X X  

Only polynomial algebraic 
expressions are used X X X X  X X X X 

No information about the measure 
units in polygonal geometric figures  X X X X X X X X X 

The universe of the variables is not 
clear X X X X X X X X X 

Examples and exercises that do not 
contribute to learning  X X  X  X X  

 
In an analogous way, we analyse eight collections approved in the PNLD in 2017 (seven books of 
the 8th grade and one book of the 7th grade) (Table 2).  

Table 2: Analysis of eight textbooks approved in PNLD 2017 

                  Textbook (TB)  → 
Problem     ↓ 

TB10 TB11 TB12 TB13 TB14 TB15 TB16 TB17 

Absence of definition X       X 

Imprecise definition  X X X X X X  

                                                                            
41The Programa Nacional do Livro Didático (PNLD) is Brazil´s textbook-assessment program, which includes 
mathematics and selects the textbooks that are freely distributed by the Brazilian Ministry of Education. 
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Biggest universe of the 
coefficients is ℤ          

Biggest universe of the 
coefficients is ℚ  X X X X X X X X 

Only polynomial algebraic 
expressions are used  X  X  X   

No information about the 
measure units in polygonal 

geometric figures 
X X X X X X X X 

The universe of the variables is 
not clear X  X X  X X  

Examples and exercises that do 
not contribute to learning  X X X  X X  

Inadequate nomenclature 
“polynomial” X X X X X X X X 

Unique factorization/complete 
factorization  X X X X X X X 

Euclidean division of 
polynomials   X      

Unnecessary rules for computing 
with algebraic expressions   X X X X X X 

 
In both analyses, we made some remarks, among other things, on conflicts with some of the PCN 
guidelines, for example, regarding the development of students’ capacity for abstraction and 
generalization. More details of the analyses performed are given in the following paragraphs. 
The definition of an algebraic expression 
In the 2010 analysis (Table 1), three textbooks present no definition of algebraic expression at all. 
The same occurs in two textbooks analysed in 2017 (Table 2). In these books, only a few examples 
are given, followed by the phrase “expressions of these types are algebraic expressions”. All other 
analysed textbooks include imprecise definitions, such as, “Expressions which include 
mathematical operations and contain letters and numbers are called algebraic or literal expressions” 
(Figure 1, authors’ translation). We observe that this assertion allows the expression x2 , ( )2ln x , 

( )xycos  to be called an algebraic expression. Also, in collection number 17, an imprecise definition 
is presented in the seventh-grade textbook. 

 
Figure 1: A definition of algebraic expressions, which was found in a textbook (PNLD 2017) and allows 

x2 , ( )2ln x , ( )xycos  to be an algebraic expression. 
First examples and exercises with algebraic expressions 
In the 2010 analysis (Table 1), four textbooks use only integer coefficients, even though the rational 
numbers have already been presented to the students in previous chapters; the other textbooks use 
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rational coefficients, even though the set of real numbers has already been presented in a previous 
chapter. In the 2017 analysis (Table 2), none of the textbooks are limited to integer coefficients in 
the first examples or in the exercises dealing with algebraic expressions, but only three of them 
remain coherent, in the sense that they use only rational coefficients because the set of real numbers 
appears later on in the collection.  
In the 2010 analysis (Table 1), eight of the nine textbooks mention only polynomial expressions in 
the first examples of algebraic expressions; the same happens with only three of the eight textbooks 
in the 2017 analysis (Table 2). It should be noted that this change from 2010 to 2017 in the 
percentage related to varied examples of algebraic expressions may be due to the approach adopted 
in the 2017 analysis, in which the first exercises were considered together with the first examples of 
algebraic expressions. 
The excerpt in Figure 2 confirms the limitation of the universe of the coefficients as well as the first 
examples restricted to polynomial expressions. 

 	
Figure 2: On the left, the first examples of algebraic expressions in a textbook (PNLD 2017), confirming the 
limitation of the universe of the coefficients to ℚ as well as the restriction to polynomial expressions in the 

first examples; on the right, the authors’ translation. 
It should also be pointed out that, once only polynomial expressions are presented as the first 
examples of algebraic expressions, the following doubts may arise later to the students, when the 
algebraic expressions called monomials, binomials, etc. are presented to them: To what extent do 
those new concepts (monomials, binomials, trinomials, etc.) differ from the concept of algebraic 
expression previously given? 
The use of geometric context 
None of the textbooks analysed in 2010 or in 2017 was careful to inform the units of measurement 
of the sides of the polygonal figures (Table 1 and Table 2), as shown in Figure 3. Although the units 
are sometimes mentioned in a few examples in one textbook in 2010 and in two textbooks in 2017, 
this information is not always present. It should be noted that the lack of any reference to the units 
of measurement causes ambiguity, as in the exercise presented in Figure 3. In fact, if x , 2, 3 and 4 
represent the length in the same unit, then the algebraic expression corresponding to the perimeter 
of the quadrilateral is 94 +x  units. However, if x is measured in meters and 2, 3 and 4 are measured 
in centimetres, then a possible expression for the perimeter of the quadrilateral is 09,04 +x meters. 

  
Figure 3: On the left, no information about the universe of the variables or about the units of measurement in 

a textbook (PNLD 2017); on the right, the authors’ translation. 
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In none of the textbooks analysed in 2010, as well as in five of the ones analysed in 2017, can one 
observe any concern with any information about the universe of variables (Tables 1 and 2). For 
example, if x , 2, 3 and 4 represent the length in the same unit, then the triangle in Figure 3 exists 
only if 2>x  units. 
The analyses carried out in 2010 and 2017 revealed five textbooks that present examples or 
exercises that do not offer any contribution to learning (Table 1). We could also observe that the 
excellent idea of using geometric context to support the learning of algebraic expressions is lost, for 
example, when the sides of squares are given by expressions like ab6 , 24

3
2 yx and 310t (Figure 4). 

Students may find those expressions representing the side of a square somewhat strange, since they 
usually make use of them to express volume or area.  
 

 
  

 

 
Figure 4: On the left, contexts that do not contribute to learning in a textbook (PNLD 2017), representing the 

measure of the side by 6ab; on the right, the authors’ translation. 
The reference to polynomials 
In Table 1, there is no item named reference to polynomials. However, it is possible to extract some 
information related to this aspect from the text in Carvalho (2010). 
Both in the 2010 and in 2017 analyses (Table 2), all the textbooks make inappropriate use of the 
term polynomial, which, in most cases, should be replaced by polynomial algebraic expression. 
But, an important fact is that some of the textbooks are effectively operating with polynomials, 
using the Euclidean division of polynomials (Figure 5) or dealing with “the” factorization 
(suggesting uniqueness of factorization) or the “complete” factorization of a polynomial algebraic 
expression. Those concepts are not suitable for elementary school. It is worth remarking that those 
items and the word polynomial are not mentioned in either the PCN or the BNCC. 
In the 2010 analysis, the use of the Euclidean division of polynomials could be detected in a 
textbook, where it is compared to the Euclidean division of integers. The same occurred with one 
textbook in the 2017 analysis (Figure 5), while all others deal only with the division of polynomial 
algebraic expressions by monomials, using the right-hand distributive property (without always 
mentioning it explicitly) and the properties of the powers (Figure 6). 
The purpose of addressing factorization and/or division is clear in textbooks, namely to simplify 
algebraic expressions. However, regarding the simplification of algebraic fractions, the values of 
the variables that cancel out the denominator are not always considered (Figure 6). 

  
Figure 5: On the left, the comparison between the division of polynomials and the division of integer 

numbers in a textbook (PNLD 2017), and its translation on the right 
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Figure 6: On the left, simplification of algebraic expressions in a textbook (PNLD 2017), with no concern for 

the values of the variables that make the denominator equal to zero; on the right, the authors’ translation. 
 
The comparison between the Euclidean division of polynomials and the Euclidean division of 
integers is somehow dangerous for the student if it is not sufficiently detailed. For example, it may 
occur to the students that if they replace the variable by any number in the division of polynomial 
expressions, they will always find, as a remainder, the same remainder of the Euclidean division in 
ℤ. However, this is not the case when 5x² –3x –18 is divided by x –2, for instance. In this case, by 
the Euclidean division of polynomials, we obtain the following polynomial identity                                      
5x² – 3x – 18 = 5x (x – 2) – 4. And, it is clear that, by replacing x with 6 in this identity, we will not 
find –4 as the remainder of the Euclidean division of the integer 144 (the result of  5.6² – 3.6 – 18) 
by 4 (the result of 6 – 2). 
In the 2010 analysis, two textbooks give more than one answer to exercises that deal with the 
factorization of polynomial algebraic expressions. In all the others, the process of factorization 
always results in a unique answer. In the 2017 analysis (Table 2), one of the books does not 
mention factorization in the eighth year; five textbooks at some point mention the expression “a 
factored form of the polynomial”, suggesting that there may be other factorizations for the same 
polynomial expression. Nevertheless, all the books that deal with factorization bring unique 
responses to the exercises (Figure 7). Regarding the issue of uniqueness of factorization/complete 
factorization of algebraic expressions, we remark that it is not correct to refer to those terms once 
the numerical universe of students is already at least ℚ, and, hence, a field. Moreover, considering 
the later problem of solving the equation , the factorization  
may be more useful than , since it reveals the roots of the polynomial equation 

 
 

Figure 7: On the left, inadequate use of the nomenclatures “complete factorization” and “the factorization” in 
a textbook (PNLD 2017), since the domain of the variables is not mentioned; on the right, the authors’ 

translation.  
In the 2017 analysis, six textbooks present unnecessary rules and nomenclature in the presentation 
of operations with algebraic expressions, which may confuse students. For example, the so-called 
reduction of similar terms seems to suggest to the student the need for a definition of the addition of 
algebraic expressions, rather than merely suggesting the use of the properties of operations with 
numbers, since all the textbooks at the beginning suggest that the symbols in an algebraic 
expression represent numbers (Figure 8). 
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Figure 8: On the left, emphasis on a special rule for operating with algebraic expressions in a textbook 

(PNLD 2017);  the right, the authors’ translation. 
The Introduction to algebra in textbooks for elementary and high school from other 
countries  
An analysis on the theme introduction to algebraic expressions was also carried out on textbooks 
from other countries, namely Portugal, Chile and Cape Verde, as well as on two books written for 
primary schoolteachers, one from France and one from Chile. International comparison of 
textbooks is not new (see Fan, Zhu and Miao, 2013, for a survey on mathematics textbook research, 
including international textbook comparison). The purpose of analysing other countries’ textbooks 
in this work was to check whether new approaches to this theme appear. 
It was possible to observe some similarities with Brazilian textbooks regarding the criticisable 
items, but also some guidelines that confirm our position and the Brazilian documents’ guidelines 
with respect to the numerical interpretation for the symbols in an algebraic expression in an initial 
and more systematic contact with algebra. The international texts also present the orientation of 
making use of the properties of arithmetic operations as support for operations with algebraic 
expressions (see, for example, Martinez and Vergnaud, mentioned in section 2). 
The collection of Cape Verde deserves special comment, since it provoked a positive reflection for 
the authors of the present article concerning the question What is really essential in the introduction 
to algebraic expressions? Throughout the 7th grade textbook from Cape Verde, letters in algebraic 
expressions appear naturally as representative of numbers and operations with such expressions as 
are performed based on the properties of operations with numbers. There is no chapter or section 
specially dedicated to deal with those topics, and, hence, no mention of unnecessary rules or new 
nomenclature. Only on one of the final pages of this textbook, the term “Expressions with 
variables” appears as a title, followed by the sentence “Throughout the year we have been using 
expressions with variables specially to illustrate rules or properties”, followed by an example of the 
commutativity of multiplication (Figure 9). 
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Figure 9: On the left, an excerpt of a textbook from Cape Verde, showing how algebraic expressions are 
treated in the 7th grade; on the right, the authors’ translation. 

 
An example of an activity that uses generic thinking and develops the ability of 
constructing simple proofs  
Differently from what we concluded from the textbook analyses that were carried out, we reinforce 
that, in the context of introduction to algebra, one can develop generic thinking and include results 
that meet the standard of proof with 8th grade students. In Figure 10, we show an activity that is 
reported in Carvalho (2010). It proved to be useful both for the development of generic thinking and 
the construction of simple proofs, naturally motivated by the desire to decide whether, after all, two 
algebraic expressions are equivalent. 

Observe the four arrangements of points below 
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a) Find a pattern for the construction of these arrangements and draw arrangements 5 and 6, 
according to this pattern. 
b) Explain the pattern that you have considered and a strategy for counting the number of points 
in any arrangement. 
c) If the sequence of arrangements continues according to the pattern you have considered, how 
many points will arrangement 10 have? And arrangement 20? 
d) Determine an algebraic expression for the number of points in arrangement n. 

Figure 10: An activity in Carvalho (2010) 
In fact, more than becoming familiar with the construction of a sequence - identifying and 
describing a pattern of construction and of counting the number of points involved in each term of 
the sequence and expressing the number of points involved in the arrangement n by an algebraic 
expression in terms of n - the activity also motivates the need to decide whether, after all, two 
different algebraic expressions given as answers to item (d) are equivalent or not. Since all the 
different patterns found by the students generated the same sequence of arrangements, all the 
expressions found should generate the same number of points, that is, they should be equivalent 
(see Figure 11 for some examples); hence, Carvalho´s students were motivated to construct simple 
proofs for those algebraic identities. In those proofs, the students made use of the properties of the 
operations with numbers, and no need for “rules for operating with algebraic expressions” was 
necessary or even expected by the students.  

Strategy and answers of 
student A 

 
b) “triple the successor minus 

2” 
d) 3 (n+1) – 2 

Strategy and answers of 
student B 

 
b) “double the position of the 

arrangement plus the successor 
of the position” 
d) 2n + (n+1) 

Strategy and answers of 
student C 

 
b) “triple the number occupied 
by the arrangement plus one” 

d) n + n + n + 1 = 3n + 1 

Figure 11: Some of the strategies used by the students 
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Finally, this activity also reinforced an aspect highlighted in the BNCC, that during the final grades 
of elementary school, students’ capacity or abstract reasoning is greater (Brasil 2, 2017, p. 56). In 
fact, the search for an algebraic expression in item (d) serves to develop students’ generic thinking. 
Therefore, the answer to the guiding question of the symposium Deductive Reasoning, Arguing and 
Proof in Textbooks, Do textbooks include contexts, contents, results that meet the standard of proof? 
should be affirmative with respect to the introduction of algebra. 

FINAL COMMENTS 
In this text, we report three different textbooks analyses with respect to the introduction to algebraic 
expressions: Brazilian textbooks in the years 2010 and 2017 and non-Brazilian textbooks in 2017. It 
was observed that, in both the analyses carried out that deal with Brazilian textbooks, there is no 
concern of their authors for helping student’s development of mathematical thinking or abstraction 
abilities, in particular of the ability of proving. Thus, the answer is negative to the guiding question 
of the symposium Deductive Reasoning, Arguing and Proof in Textbooks, namely, Do textbooks 
include contexts, contents, results that meet the standard of proof? 
Regarding the foreign textbooks, it was possible to find some similarities with the Brazilian 
textbooks with respect to the criticisable items. However, the analysis of a collection from Cape 
Verde provoked a positive reflection for the authors of the present article on the matter: What is 
really essential in the introduction to algebraic expressions? 
Certainly, one restrains the students’ development of abstract thinking and of the ability to perform 
simple proofs (such as verifying algebraic identities based on the properties of operations) by not 
considering the symbols in an algebraic expression as numerical variables. 
The example of an activity mentioned in the last section stimulates the students’ abilities of arguing 
in mathematics and constructing simple proofs. It also summarises and deepens the objectives of 
the first grades and aims to develop students’ abstraction capacity in the final grades of elementary 
school; hence, it is also in accordance with the guidance of official Brazilian documents. Yet, most 
importantly, it shows that the answer to the guiding question of the symposium Deductive 
Reasoning, Arguing and Proof in Textbooks, namely, Do textbooks include contexts, contents, 
results that meet the standard of proof? should be affirmative with respect to the introduction of 
algebra.  
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TEACHER-RESOURCE USE AROUND THE WORLD 
JANINE REMILLARD, HENDRIK VAN STEENBRUGGE, LUC TROUCHE  
 
Purpose 
This symposium presented research from different countries and school systems around the world, 
examining different aspects of teachers’ interactions with and use of resources, factors that 
influence them, and their consequences for instruction. Representing studies of teachers’ use of 
resources from Brazil, China, France, Mexico, South Africa, Sweden, and the United States, the 
symposium explored the relationship between individual and collective teacher capacity and the 
design of resources as factors that shape the enacted curriculum. The following questions guided the 
session: 
• How might we understand the processes by which teachers engage with curriculum 

resources to design instruction?  
• How does teacher capacity influence teachers’ curriculum designs and how is this capacity 

developed and enhanced? 
• How do resource features contribute to teachers’ curriculum designs? 
• How does collective use influence teachers’ design decisions over time?  
• How do teachers’ curriculum designs contribute to the enacted curriculum?  

Guiding Frameworks 
The work represented in the session is supported by a participatory perspective on teachers’ 
resource use, which views using instructional resources as a dynamic process involving reading, 
interpretation, appropriation, and design (Brown 2009; Gueudet & Trouche 2009; Remillard 2005). 
Resting on socio-cultural analyses of the agent-tool relationship (Vygotsky 1978), this perspective 
conceptualizes curriculum resources as cultural tools that mediate teachers’ curriculum design work 
and are products of this work. Teachers’ intellectual and cultural resources also mediate this 
process. Finally, teachers’ curriculum design work occurs in a context, often with other teachers, 
and unfolds over time, leading to new designs, new capacities, and new curriculum enactments. 
Significance and Theme 
The symposium fits within the conference theme of “textbook use by teachers,” however, we 
consider instructional and curricular resources that go beyond the textbook, including resources 
designed to guide, support, and enhance mathematics teaching and learning in schools and 
re-sources generated by teachers as they design instruction. In 2017, the types of resources used by 
teachers are diverse and include print, (more and more) digital, and online tools. The symposium 
considered teachers’ use of resources across different cultural contexts and types of resources.  



 Teacher-Resource Use around the World 

 129 

Symposium Participants and Organization  
The symposium was intended to highlight the work of early-career researchers from various parts of 
the world, having in mind that new researchers could be more sensitive to phenomena arising in the 
thread of digitalization. Nine distinct papers were included, representing research based in Brazil, 
China, France, Mexico, South Africa, Sweden, and the United States. The session began with a 
10-minute introduction to the themes of the session, followed by 15-minute presentations of each 
paper, and concluding with sufficient time devoted to questions and discussion among the audience 
around the guiding questions, moderated by the session chairs. The nine contributions to this 
symposium are listed below and included in the ICMT-2 proceedings as short abstracts or extended 
papers.  
Papers on Teachers’ Interactions with Resources and Related Classroom Enactments 
Design in use: from author intended to written to enacted lesson in Sweden, Hendrik Van 

Steenbrugge, Nina Jansson, Fredrik Blomqvist, and Andreas Ryve, Sweden 

Analyzing teachers’ collective engagement with resources through the lens of their documentational 
trajectories: the case of French teachers facing a new curriculum, Katiane de Moraes Rocha, 
Luc Trouche and Ghislaine Gueudet, France 

An analysis of the engagement of pre-service teachers with curriculum resources in Brazil, Cibelle 
Assis and Verônica Gitirana, Brazil 

From written to enacted lessons: A U.S. teacher's mobilization of a mathematical modelling-based 
algebra unit, Luke Reinke, USA 

Papers on Teacher Capacity and Learning in Relation to Resource Use 
Disaggregating teachers’ pedagogical design capacity (PDC) in South Africa, Moneoang Leshota, 

South Africa 
Knowledge of curriculum embedded mathematics: Exploring a critical domain of teaching in the 

U.S., Janine T. Remillard and Ok-Kyeong Kim, USA 

An investigation of Chinese mathematics teachers’ resources work in collectives and their 
professional development, Chongyang Wang, Luc Trouche and Birgit Pepin, China 

Interdisciplinary program for professional development in mathematics teaching in Mexico, Daniela 
Reyes-Gasperini, Mexico 

Resources for teaching, Jose Luis Cortina and Jana Visnovska, Mexico  

Dissemination in addition to presentation in symposium 
Four paper presentations (de Moraes Rocha et al., 2018; Wang et al., 2018; Assis & Gitirana, 2018; 
Cortina & Visnovska, 2018) have been extended as a full paper and are included as such in the 
conference proceedings.  
Three paper presentations have been published meanwhile or are currently under review and are 
included in the conference proceedings as short abstracts: 
Leshota, Moneoang & Adler, Jill, 2018. Disaggregating a Mathematics Teacher’s Pedagogical 
Design Capacity. In L. Fan, et al., (Eds.), Research on Mathematics Textbooks and Teachers’ 
Resources: Advances and issues (pp. 89-118). New York: Springer. 
Remillard, Janine T. & Kim, Ok-Kyeong, 2017. Knowledge of curriculum embedded mathematics: 
exploring a critical domain of teaching. Educational Studies in Mathematics, 96(1), 1-17.  
Van Steenbrugge, Hendrik & Ryve Andreas, submitted. Developing a context-specific 
author-intended and written curriculum in Sweden. 
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AN ANALYSIS OF THE ENGAGEMENT OF PRESERVICE 
TEACHERS WITH CURRICULUM RESOURCES IN BRAZIL 

CIBELLE ASSIS AND VERÔNICA GITIRANA  
 
Abstract 
Within the theme “Teacher-resource use around the world: Understanding Critical Issues and 
Instructional Outcomes”, of Symposium C we were particularly interested in: “How might we 
understand the processes by which teachers engage with curriculum resources to design 
instruction?” To answer it, we analyzed the trajectories of three pre-service teachers, focusing on 
the events in which they designed their resources for specific mathematics classes, during an initial 
teacher training course at a Federal University in Brazil. The research considered three final essays 
(TCC - Trabalho de Conclusão de Curso), which include a lesson plan and a worksheet, and other 
resources retrieved after the analysis of the TCC to compose their documentational trajectories. 
From them, we developed a categorization for their quotations considering the curricular resources 
(PCN and textbooks). The results indicated that the processes of engagement with these resources to 
design instruction was influenced by: specific characteristics of these resources; previous 
experiences with them at school and at university; and integration with other resources. These 
aspects evidenced a documentational perspective for prospective teacher in a training course 
context. 
 

Introduction 
The debate around different aspects of teachers’ interactions with resources, proposed by the 
Symposium C, considers, essentially, the understanding of a teacher’s work as a work with and on 
resources. For Gueudet and Trouche (2009), this work is the core of teachers’ professional activity 
and professional change. For us, since we work and research within teacher training, this 
understanding is particularly important in order to design teachers training courses from the 
viewpoint of the future math teacher’s engagement with resources.  
In this paper, we will propose a reflection about the processes by which three pre-service teachers 
engage with a particular curriculum resource - the PCN (Brasil 1998) and the use of the textbooks 
as a curricular resource, in order to prepare a math lesson. Would they be similar processes, due to 
the use of the same resources within their particularities; or diverse processes, due to the diversity 
of resources used during their trajectory?  
In order to answer it, we structured our contribution in five sections. In the first one, we present the 
Brazilian context considering the PCN and textbook. In the second section, we consider concepts 
related to Documentational Approach to Didactics (Gueudet & Trouche 2009), the 
Documentational Trajectory (Rocha 2016) and Forms and Modes of Engagement (Remillard 2012). 
Next, we describe the pre-service teachers and our associated methodological choices. In the fourth, 
we present the data and our analysis and discussion. Finally, we present some remarks and future 
perspectives. 



 Assis and Gitirana 

 132 

The Brazilian context: PCN and textbooks 
Brazilian basic school system is structured in three school levels: Educação Infantil (2 - 5 years 
old), Ensino Fundamental (6 - 14 years old) and Ensino Médio (15 - 17 years old). In addition, the 
Ensino Fundamental level is divided into Anos Iniciais (1st - 5th year) and Anos Finais (6th - 9th) 
(Brasil 2013).  
Regarding Brazilian national curriculum references, we have, as official programs, the following 
documents: Diretrizes Curriculares Nacionais Gerais para a Educação Básica (Brasil 2013, which 
encompass the whole basic school system, and Base Nacional Curricular Comum – BNCC, which is 
under development. In addition, Parâmetros Curriculares Nacionais - PCN (Brasil 1998) are 
curricular references for what is called Ensino Fundamental. 
The PCN is a curricular reference used by teachers at school and preservice. In fact, they give 
teacher and their school community some support for discussion and development of educational 
projects, references for analyzing and selecting didactic materials and technological tools.  
In Brazil, textbooks are used as a curricular resource. As in other countries, teachers are heavily 
influenced by textbooks and they have been fundamental to teacher’s decision on which contents 
must be taught as well as the teaching approach to be developed in class (Lajolo 1996). Our States 
Schools receive textbooks from a Federal Government program called PNLD - Programa Nacional 
do Livro Didático. It is a national program responsible for the process of submission, evaluation, 
organization of the teacher’s choice, acquisition and distribution of the textbooks. The collections 
are submitted by the editors, evaluated by a national commission appointed by the Government. 
The result of this evaluation is published in PNLD Guide of Textbooks (Brasil 2016), next the 
mathematics teachers’ team of each school choose a textbook collection to be used from this guide 
(Brasil 2015).  
In Brazil, both PCN (Brasil 1998) and textbooks are used as curriculum resources. This point of 
view will be analyzed later. In fact, we introduce some general PCN characteristics and then we 
make a parallel with the textbooks evidencing the differences between them considering modes and 
forms of address.  
The Theoretical framework 
Documentational Approach to Didactics and the Documentational Trajectory 
Approximately ten years ago, the Documentational Approach to Didactics, introduced by Gueudet 
and Trouche (2009), considered teacher’s work, in its specificity and continuity, as a work with and 
on resources. It brings a general reflective perspective focused on teachers’ resources, their 
appropriation and transformation by a teacher or by a group of teachers working collectively. 
Similar issues have already been investigated by Adler (2000), whose notion about resources is a 
broad one: everything that sources teacher activity that appears particularly productive is widely 
recognized internationally. Adler (2000) suggests “think[ing] of a resource as the verb re-source, to 
source again or differently” (p. 207).  
Following Adler (2000), Gueudet and Trouche (2008) propose a broad notion of resources but with 
some restrictions: teacher’s knowledge is not considered as a resource (but what guides their work 
with the resource), and what is material or materializable entities are considered as resources. For 
example, teacher’s classmates are not considered as a resource; but advices, messages, and 
proposals of colleagues are.  
Like the instrumental approach (Rabardel 1995) that distinguishes what is available for the activity 
(the artifacts) and which is developed by the subjects (the instruments), Gueudet and Trouche 
(2009), in the documentational approach, distinguish what is available for the activity of the 
teachers: the resources; and what they develop to support their teaching activity: the documents. 
According to the Documentational Approach to Didactics, the evolution from resources to 
documents happens throughout a process they called a documentational genesis. A document is 
developed from the combined resources used in different contexts, and these usages, by a set of 
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knowledge and schemes. In fact, since documents incorporate teacher knowledge and schemes, the 
development of documents and teachers’ professional growth are interrelated (Gueudet et al. 2012). 
The figure 1 is a representation of this documentational genesis process.  
 

 
Figure 1 – Schematic representation of a documentational genesis 

Gueudet et al (2012, p. 720) 
For a given teacher, in order to perform a given type of task, there is a dialectic relationship 
between resources and documents and two dimensions intertwined: instrumentation - the resources 
act on the teachers (in helping them conceive their activity in a given way) and instrumentalisation - 
teachers also act upon these resources as they appropriate them (inverse process of 
instrumentation). We can also observe that there are external influences over the teacher whose 
origin is his institution or communities where he or she is integrated.  
While studying the development of teachers’ documental system, Rocha and Trouche (2017) 
propose a new concept for modeling the teachers’ history of their resource usage: the teacher’s 
documentational trajectory. Rocha (2016) defines the teacher’s documentational trajectory as the 
interaction between events and resources that can be represented schematically following a 
timeline. In this perspective, a resource is something that supports the work of a teacher and an 
event is defined as something that has happened in the professional life of the teacher and that, at 
the time of the development of his trajectory representation, the teacher recalled as important in 
relation to his documentational work. 
Rocha defined two types of representation of this trajectory: a reflective mapping (created by the 
professor himself) and an inferred mapping (made by the researcher) from the data and information 
collected. The term “mapping” of teacher resources integrating an idea of the progressive 
exploration of a new territory rather than the simple idea of representation for the teachers’ 
resource.  
Modes and Forms of Address and Engagement with curriculum resources 
A curriculum resource is designed to provide an environment for helping to build the curriculum. 
Remillard (2012) conceptualized modes/forms of address and modes/forms of engagement to refer 
to what teachers develop through transactions with a curriculum resource. She developed her 
research considering NCTM Standards/USA and Standards-based curriculum materials, among 
which she mentioned Everyday Mathematics and Investigations in Number, Data, and Space 
(Remillard 2012). 
The form of address of a curriculum resource “refers to the physical, visual, and substantive forms 
it takes up, the nature and presentation of its contents, the means through which it addresses 
teachers” (Remillard, 2012, p.108). The form of address is what teachers actually see, examine, and 
interact with when using a curriculum resource. She identified it in five important interrelated 
categories to be studied: structure, look, voice, medium, and genre. 



 Assis and Gitirana 

 134 

• The Structure is the most widely studied feature of curriculum resources. The components 
of the structure are related to what a resource contains and what it offers for teachers and for 
students. The Structure is also related to how these offerings are organized; 

• The Look refers to the simple visual appearance of a resource or what teachers see when 
they look at it. Some elements as bright pages, color photographs and pages that look like 
advertisements, fonts and type of paper result from a set of design choices. 

• The Voice refers to the way the authors/designers’ purpose is represented, and how they 
communicate with the teacher. In some curriculum resource, the authors are invisible and 
little information is given about themselves and their own experience. Anyway, the authors 
communicate their intentions through the actions they suggest for professors to undertake. 

• The Medium refers to the form under which the resource is diffused. Unlike printed 
resources, digital resources allow and often support a non-linear path through what they 
offer, giving the user freedom of navigation. This element can influence interactions and 
resources’ uses.  

• The Gender refers to the nature of the curriculum resource within a broad classification of 
written materials for teachers. Gender is important because it has implications for the 
expectations of teachers, expectations that influence how they approach a resource. 

In her terms, modes of engagement refer to “what a teacher does in her transactions with a particular 
curriculum resource, how she engages, infuses meanings, and makes sense of its offerings (p. 
115).” Just as the mode of address of a resource can be seen in its forms, a teacher’s mode of 
engagement can be understood through the forms that engagement takes up.  
According to Remillard (2013), a teacher’s mode of engaging with a curriculum resource as a 
reader includes four important features to describe their forms: what s/he reads for; which parts s/he 
reads; when s/he reads; and who s/he is as a reader. These questions related to “when” consider 
different moments of teaching (before, during, and after) and they are related to “why”. In addition, 
the teacher, as a reader, is associated with an attitude or an orientation. According to Remillard 
(2012), the forms of engagement can evolve during the process of reading and the construction of 
experience. In addition, these forms of engagement can lead to different uses of the same resource.  
The three pre-service teachers and methodological associated choices 
We observed three pre-service teachers named here Ceci, Marcos and Carlos during the last year of 
their training course offered by a federal university in Brazil, which takes four years. The three 
pre-service teachers were classmates in many disciplines of the course between 2012 and 2017. 
They were chosen as subjects of this research because we supervised them during the semester 
where they produced their TCC reports (from April to June in 2016). In common, these pre-service 
teachers have already developed some projects with us using the software of dynamic geometry 
Geogebra. The TCC report - Trabalho de Conclusão de Curso - or final essay, is a mandatory report 
written by every pre-service teacher in the last year of the course. It comprises a report (around 100 
pages in printed and digital version) about a teaching experience.  
The pre-service teachers designed their resources for specific mathematics classes and produced a 
lesson plan (which contains goals, methodology, materials, references) and a worksheet (a script 
with activities) to be experienced in a class at school. Thus, the TCC report contains details about 
this designing which includes preparation of a worksheet until the implementation in class at a state 
school.  
Ceci (case 1) aimed to design a lesson about triangles classification by sides and angles supported 
by Geogebra for a 8th grade class. Marcos (case 3) designed a mathematics lesson that aims at 
exploring square’s and cube’s properties supported by Geogebra with an 8th grade class. Carlos 
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(case 2) designed a lesson to introduce feature aspects of linear and affine functions using Geogebra 
for at a 1st grade year of high school class.  
We advised Ceci and Marcos to use the PCN (Brasil 1998) related to the 8ht grade, and OCEM 
(Brasil 2006) for Carlos, who decided, by himself, to use the PCN (Brasil 1998) aswell. Our 
analysis of their TCC reports started with the reading and identification of the quotations (direct and 
indirect ones) from the textbooks and the PCN, appearing in the theoretical framework section as 
well as in the lesson plans and worksheets, using Contents Analysis (Bardin 1977) for creating 
categories to infer the pre-service teachers as readers in the Remillard’s sense (2005; 2013). We 
used the software MAXQDA in order to organise and categorise the quotations directly from the 
TTC reports, but we also had access to the three textbooks used.   
After analyzing the TCC reports, we asked the pre-service teachers to build up their 
documentational trajectory. They presented and explained events and associated resources 
considering their importance for their professional development. They mentioned events from 2012 
to 2016 which comprises the period between the beginning and the last year of their under graduate 
course. As a result, this trajectory gave us a general perspective on their experiences with resources, 
including curriculum resources and textbooks, over time. A first interview was done in order to get 
details about each documentational trajectory. It was recorded on audio and video and happened in 
November, 2016.  
Finally, a last video-recorded interview was carried out to understand unclear aspects related to 
their engagement with textbooks and the PCN, which were previously analyzed by us from the TCC 
reports. It is important to say that we did not observe the pre-service teachers’ resources while they 
were designing in class at school.  
PCN and textbook: Modes and forms of address 
The PCN (Brasil 1998) is organized in four cycles, separated into two volumes: the first volume 
comprises the cycle 1 (1st - 3th year) and the cycle 2 (4st - 5th year), and the second volume, the cycle 
3 (6ht - 7th year) and the cycle 4 ( 8ht - 9th year). In our research, we considered the second volume of 
the PCN because it was used as a reference by the pre-service teachers. 
The second volume is organized in three parts. The first one is related to general aspects about 
Mathematics which comprises: topics about curriculum and general aspects of teaching 
mathematics; characteristics of Mathematical knowledge; teaching-learning process; 
problem-solving as a methodology; mathematics teaching approaches within history, technology 
and games; general goals of teaching mathematics; some orientation of contents to be taught and 
evaluation principles. The second part considers almost the same topics being more specific 
according to the cycle and the mathematical subject (Numbers and Operations, Space and Form, 
Geometric Measurement and Dimension, Statistics). In addition, in this part, the PCN states that 
mathematics subjects must consider the concepts, proceedings and attitude dimensions. Finally, in 
the last part, for both cycles there are didactical orientations organized by subjects. The PCN 
approach points out didactical principles for some mathematical concepts related to specific goals 
that should be considered by teachers.  
Considering the textbooks used by the pre-service teachers, in general, they were organized by 
chapters, sections and subsections. Their proposed activities are divided into: activities for 
exploration and investigation, for review and for contextualized problems. Their editorial design 
allows teachers and students easily identify them. For each textbook, there is a teacher’s guide with 
didactic orientations to use students’ textbook and also suggestions more accurate as sites, articles 
and others resources 
The PCN and textbooks are distinct curriculum resources due to their different structure, look and 
voice. In fact, PCN proposals sound like advices for teachers, without details about which school 
grade contents can be exactly worked on, and also indicate very basic contents for each cycle 
without organizing them into grades and inside the grade. This organization of contents in general 
lead teachers and schools to follow the textbook collection as a curriculum resource. PCN does not 
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present colorful photographs like the ones you can see in the textbooks, and the PCN language is 
more formal.  
The PCN was written for principals, trainers and teachers, while textbooks were written having 
teachers and students as audience. The PCN is not commercial, while the textbooks are, and were 
the latter been approved by the PNLD program   
PCN and textbooks: Modes and forms of engagement 
Regarding PCN (Brasil 1998), in order to infer ways of preservice teachers engagement with it, we 
observed the sections quoted by them in their TCC reports. A quotation has a double sense: a real 
use of PCN (information mentioned in the TCC reports what includes the lesson plan or the 
worksheet) and a possible use of any PCN idea in their planning. 
For example, Ceci wrote this paragraph in her TCC report (written in Portuguese and translated by 
us) where she states that she intends to construct an activity with Geogebra, which encompasses 
PCN assumptions (Brasil 1998, p. 26): 

In order to carry out the adaptations of the exercises for Geogebra, we were guided by some 
recurring keywords in all this work, such as constructing, testing, comparing, analyzing/ 
conjecture, observing, moving/dragging, among others, so that our activity attributed these 
possibilities. And that in a way, it could satisfy the following statement of PCN (1998):  
The exercise of induction and deduction in Mathematics is of importance in developing the 
capacity to solve problems, to formulate and test hypothesis, to induce, to generalize and to infer 
within a certain logic, which assures a relevant role for learning science at all levels of education 
(Brasil 1998, p.26).  

 

 
Figure 2 – PCN representation and mentioned sections in the TCC report 
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Beyond PCN quotation, we can also say that she applied the PCN orientations in her lesson plan. In 
fact, she proposed to construct examples of triangles to explore them by dragging and to observe 
invariant properties and to construct a classification of triangles. After the analysis of quotations, 
we organized them into three categories: technologies in math classes, didactic orientations and 
curriculum information. These categories were inspired by the PCN organization, despite a 
quotation can be found in a section with a different title from the category name. This 
categorization helped us to infer what the pre-service teachers had read and what for. 
Figure 2 represents PCN structure (translated here) where we pointed out the visited PCN sections 
and also the categories for each identified quotation.  
We can affirm that the three preservice teachers read the same subsection of the PCN - Parte 1: O 
uso das tecnologias - and used it in the TCC report. They also mentioned Seleção de conteúdos to 
find specific orientations about Numbers and operations (Carlos) and Geometry (Ceci and Marcos). 
The same happened in section Orientações Didáticas for cycles 3 and 4, where they mentioned 
aspects related to Geometry (Ceci and Marcos) and Algebra (Carlos). We can observe that Ceci and 
Marcos used common PCN information, we hypothesize that this is due to the fact that they were 
both planning a lesson on studying the characteristics of plane figures (triangles and squares). 
However, regarding the lesson plan, including the worksheet, there were few evidences of PCN 
uses. Only Ceci and Carlos mentioned it in their lesson plan as a reference for planning without 
specifying exactly what. Because of this, we realized that the information read and used in their 
TCC reports were probably “implicit” in their plan lessons or worksheets. From this fact, we 
decided to investigate in detail considering the original source - PCN (Brasil 1998) and asking 
them, through an interview, how they used the PCN and which parts influenced their design. 
From the first interview, which was conducted individually, we observed that Marcos and Carlos 
used the PCN as a resource to write their TCC reports, while Ceci used the PCN as a resource for 
designing, as we presented in the previous example. In fact, Marcos and Carlos revealed that they 
searched for information or orientation related to technologies, didactic suggestions and curricular 
aspects. In addition, they revealed that they seek for information through keywords (technologies, 
function, geometry) and after reading, they decide what is important to consider in the theoretical 
section of their TCC reports.  
Concerning the mathematics textbook, their uses were easily identified in Ceci’s and Carlos’s 
lesson plans as a resource for proposing tasks for students, but not precisely in the worksheets. Ceci 
used the textbook in order to find some exercises about classification of triangles (sides and angles). 
In fact, she mentioned three exercises she adapted, and Carlos looked for problems related to linear 
function. In fact, he found a problem and then he added two items created by him. 
Therefore, during the interview, new uses emerged. Ceci mentioned that she also used the textbook 
to learn more about triangles classification and to do exercises, while reading many textbook 
sections. Curiously, she mentioned that she did not use the teachers’ guide of the textbook because 
she did not know about it. Carlos mentioned that he did not read any chapter apart from the specific 
section related to his subject. He did not observe the suggestions to use technologies or other 
resources, which are shown in the textbook next to the problem used by him, and he did not take 
advantage of the resources for teachers. 
Different from the others, Marcos did not mention any exercise or example in his TCC report 
(lesson plan or worksheet). Therefore, during the interview, he mentioned how he used the 
textbook: he solved problems related to his subject, he looked for definitions and examples. He said 
that he used the textbook to study Mathematics and to be well prepared for teaching. He mentioned, 
for example, that he learned from the textbook that there are 11 planning forms for the cube. The 
textbook version used by him was not the teacher’s guide of the textbook.  
Considering a researcher’s point of view, we realized that the teachers’ use of resources comprised 
an observable dimension and a not observable one. In fact, as regards a lesson planning or a 
worksheet design for a specific lesson (examples of a resource-reference), it was possible to identify 
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some resources that were used and how they were used. It means that, depending on the level of 
details expressed on it, we can identify “sections or pieces” of resources through the quoted 
references (directly or indirectly). In addition, in this case, it is possible to identify “sections” in the 
original sources. For these aspects, we named an observable dimension of the use of the resources. 
Therefore, there are much more not observable elements related to resources uses. For example, a 
not explicit use of a resource, previous experiences with resources, strategies for searching for 
information, or else, elements of documental genesis are also not directly observable. This idea has 
conducted us to think about an iceberg model for uses of resources, considering a given resource as 
a reference (Figure 3).  

 
Figure 3 – Iceberg model for resources uses from and through a resource-reference 

The small part of the iceberg represents the observable aspect of the resources and their uses; and 
the bigger one, what is below the water line, is related to what we cannot observe directly from or 
through the resource analyzed. A teacher’s document itself is composed by both dimensions.  
Previous experiences with PCN and Textbooks 
In order to understand their PCN and textbook uses, we proposed to the pre-service teachers to 
construct a representation for their documentational trajectory. We requested them to present some 
important events for their professional development that happened during the training course.  
In common, they mentioned more events related to experiences of teaching mathematics than 
events related to learning mathematics. We also identified, in each representation, events where the 
national references, including curriculum resources, and the textbooks were present. In each 
representation, naturally, we identified that Geogebra was a resource that was strongly present 
among the mentioned resources. As an example of this analysis, Figure 4 represents Ceci’s 
trajectory with our categorization of the events.  
 

 
Figure 4 – Representation for Ceci’s documentational inferred trajectory 

Regarding the textbooks and considering their experiences at university, the pre-service teachers 
used them to study mathematics and to design activities; but they also had some lessons about 
textbooks as a subject of study. These experiences allowed them to have another idea about them. 
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In fact, during the interview, they mentioned that the textbook was a resource, but it was not the 
only one; the textbooks must be analyzed by the teachers considering possible mistakes; and the 
teachers can change the sequence of contents and also insert some themes.  
From the interview, we observed that the pre-service teachers’ conceptions about textbooks were 
related to their school’s teachers when they were students. That is, a resource for guiding the 
teacher in class and also designing the lesson plan at home. They also mentioned their experiences 
with the textbooks during their school time. In general, the textbook was used to be the major 
resource for studying Mathematics and also an important resource for their teachers. Their teachers 
used to use it for planning the lesson at home. In class, the teacher used it to give a definition or 
some examples and also to propose exercises to be done. 
Ceci said that she usually took notes from the blackboard and rarely did she study from the 
textbook. Using it as a reference, it was used to do exercises and to see check  the answers. Marcos 
said that he appreciated the geometry classes because his teacher used drawing instruments and he 
was always engaged with solving problems. Carlos said that his teachers did not use any other kind 
of resource beyond the textbooks and, in class, they explored the problems and exercises in the 
textbook. 
Regarding the curricular resources, they are introduced in the last two years of the course during 
four disciplines dedicated to curricular internship: two of them dedicated to internship at the 6th - 9th 

grades of elementary school (Estágios 1 and 2) and the others to High School (Estágios 3 and 4).  
During these disciplines, the curriculum resources for the three pre-service teachers played an 
important role in the professional development, giving them the “feeling of” being a teacher. 
During the interview, they talked about responsibilities and the knowledge one needs to become a 
mathematics teacher, among them, knowing the PCN and understanding its conceptions.  
Considering the inferred documentational trajectory, we conclude that Geogebra played an 
important role in the pre-service teachers’ career. In fact, from the trajectory, we can observe that 
during the school time they had no math classes with the use of computers, particularly with 
dynamic geometry. On the other hand, at university, they developed a diversity of activities (events) 
involving Geogebra, being used to study mathematics or to develop teaching situations. As a 
consequence, we identified some influences of this new resource (and the dynamic geometry 
concepts) in their planning. 
The first one is related to the contrast between the textbook (static objects) and the dynamic 
geometry (dynamic objects). This conception conducted them to engage differently with the 
textbook: Ceci adapted two textbook exercises to explore dynamic geometric constructions and, as 
a result, to allow students to understand the triangle classifications (by sides and by angles) as 
proposed in the textbook; Carlos considered a problem in a textbook which was about linear 
function but added two extra items to explore the coefficient influences over their graphic 
representation using the tool “selector”.  
The second influence is related to the idea that Geogebra might improve the learning in 
Mathematics through exploration of situations gained from the geometrical constructions. For 
example, Ceci proposed exploring the isosceles triangle characteristics considering just one 
geometrical construction which comprises a family of isosceles triangles; Carlos proposed 
identifying the influences of the coefficients through observation of a variety of graphical 
representations of linear function; Marcos proposed a comparison between a square as drawing and 
as a geometric construction to promote the students’ perception about the square properties through 
the differences between them.  
Final Remarks 
Concerning our research question ‘how are the processes by which three pre-service teachers 
engage with a particular curriculum resource (PCN) and textbooks, in order to prepare a math class: 
similar processes, due to a particular resource, or a diversity of processes, due to the diversity of 
resources? We identified three sources of influences over the engagement with resources.  
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This sources, altogether, indicate that the process of engagement is related to a diversity of 
resources but also to the particularities of each one and the integration between them, which is built 
over time through different experiences.  
The first source is related to specific characteristics of the two resources - PCN and textbooks. 
Considering PCN, it was used as a resource for learning about general teaching aspects 
(technologies and education, didactic orientations and curriculum information) instead of having 
been used to plan with. This use is comprehensive because the PCN particularities (forms of 
address): it is a long text without objective suggestions for teachers, unlike textbooks.  
The second one considers previous experiences with these resources, at school and at university. In 
fact, the experiences they had as students at school led them to conceive textbook as a resource for 
students to solve problems and, for a teacher, a resource to guide their class. For this reason, we 
affirm that their use of the textbook was limited to finding appropriate exercises for their lesson 
plans, despite changes as adaptation, addition of items related to the textbook exercises/problems. 
The pre-service teachers were also influenced by the discussion about textbook at university. In 
fact, they created their own proposals adjusting the textbook exercise/problems, but these changes 
were also based on the desire of using the Geogebra. This aspect is related to the last source of 
influences under the engagement, the integration with other resources. 
In fact, the contrast between the textbook (static objects) and the dynamic geometry (dynamic 
objects) but also previous experiences with the Geogebra were fundamental influences in their 
designing and in their engagement with the PCN and with the textbook guiding their design.  
This research also allowed us to preset our methodological choices as a way to answer the question 
“How might we understand the processes by which teachers engage with curriculum resources to 
design instruction?” We started considering a resource-reference (TCC report), and from it, we 
identified the uses of the explicit resources. Since we did not follow the pre-service teachers’ 
activity itself while they were preparing their lessons or using resources in the classroom, we had 
access to only a part of their resources and their documents. Next, the representation of pre-service 
teachers’ documentational trajectory, followed by interviews, clarified the two first sources of 
influences over their engagement with the PCN and textbooks. The last interview about how they 
used the PCN and textbooks resources was fundamental to confirm the integration between them 
resources as a source of influence and to reinforce the others.  
The use of not explicit resources in the resource-reference confirmed our perspective of the iceberg 
model for the uses of the resources.  
This research opens two perspectives. The first, improving methodological choices to achieve the 
uses of resources, particularly the uses not explicit ones. Next, considering the documentational 
approach to didactics, our research indicates the importance of understanding the “production of the 
first document” by them, and probably of thinking about the process of formation of their first 
documentational systems. 
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AN INVESTIGATION OF CHINESE MATHEMATICS 
TEACHERS’ DOCUMENTATION EXPERTISE AND THEIR 

PROFESSIONAL DEVELOPMENT IN COLLECTIVES 
CHONGYANG WANG, LUC TROUCHE AND BIRGIT PEPIN 
Abstract 
The boom of technology and a plethora of Internet resources are likely to enrich mathematics 
teachers’ teaching resources and the forms for their collective work. This creates a new complexity 
for both the work of teachers and researchers who are interested in teachers’ work and their 
professional development. Such situation has led to the emergence the Documentational Approach 
to Didactics (DAD) (Gueudet, Pepin & Trouche 2012), which provides a perspective for 
investigating both teachers’ individual and collective work with resources. With a particular interest 
in the knowledge aspect of teachers’ interaction with resources, we propose the notion of 
Documentation Expertise (DE) based on the notion of documentation work in DAD, and selected 
methodology tools, such as Documentation-working Mate (DWM), for studying it. To contribute to 
the symposium topic “teacher-resource use in the world”, we situate our study in China, where 
teachers’ collective work is part of teachers’ daily work, which is evident in their various activities 
in the so-called Teaching Research Groups (TRG). We investigated two middle school mathematics 
teachers from the same school (one advanced teacher, and one novice teacher). We address (and 
compare) their individual work with their personal resources, and their collective work in the TRG. 
In terms of results, we develop insights into selected components of their DE, and how their DE is 
developed through collective work. This study is part of the first author’s PhD project1 (2014-2018).  
Keywords: mathematics teachers’ resources, teacher professional development, documentational 
approach to didactics, documentation expertise, pedagogical design capacity, 
documentation-working mate 
Introduction  
Aiming to contribute to the Symposium C “teacher-resource use around the word”, we situate our 
research in the context of China. Moreover, we have a common interest in teacher expertise (Pepin, 
Xu, Trouche & Wang, 2016) and design capacity building in relation to resource use (Leshota & 
Adler, to be published; Pepin, Gueudet, & Trouche 2017; Remillard, to be published). The issues 
we address in our study are: (1) “how can we understand the process by which teachers engage with 

                                                                            
1 This PhD project entitled “An investigation of mathematics documentation expertise and its development in 
collective work: two contrasting contexts from China and France” started in September 2014, co-supervised 
by Luc Trouche at ENS de Lyon and Binyan Xu at East China Normal University, with Birgit Pepin at 
Eindhoven University of Technology as external supervisor. 
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curriculum resources to design instruction?” and (2) “how does teachers’ collective work influence 
teachers’ design decisions over time?” 
In 2014, we conducted a pilot study in China (Pepin et al. 2016), exploring the interactions with 
resources of three mathematics expert teachers from the same high school. Results show that (1) 
mathematics teacher (knowledge and) expertise has many facets, and one of them relates to their 
design activity (e.g. lesson preparation); (2) teachers’ expertise of interacting with resources and 
their design activity seem to be enhanced by working in collectives (e.g. TRGs in this study); and 
(3) the ‘institution’ of TRG in China is a special form of mathematics teachers’ collective work. In 
line with this study, we further investigated new Chinese (and French) cases with respect to their 
specific expertise in terms of teachers’ resource work and its development in collectives. 
We are interest to see: (1) From the individual perspective, what elements of the expertise in 
resource work could be found? (2) From the collective perspective, how does the collective activity 
promote such expertise development? 
In this paper we start with our theoretical framework of DAD, where the notion of DE will be 
proposed and defined. In the second section, the ‘institution’ of TRG in China is described as the 
context of teachers’ collective work in our case study. In the third part, we explain the methodology 
and tools inspired by the DAD. In the fourth section, we present our results from the individual 
perspective of the teachers’ resource preference, and subsequently from the collective perspective 
of their cooperation in TRGs. In the fifth section, we discuss our results and develop insights 
resulting in our conclusions. 
Theoretical Framework  
In this section, first we situate our study in the frame of the Documentational Approach to Didactics 
(DAD). Second, in order to investigate the expertise aspect of teachers’ working with resources, we 
propose the concept of Documentation Expertise (DE) and develop a definition of DE.  

The Documentational Approach to Didactics 
Due to the difference in the language translation of ‘resource’ from English to Chinese, several 
researches (Xiang & Wei 2005; Jin 2013) discussed on teachers’ conception of ‘resource’ in the 
field of technology education in China, aiming at reflecting and broadening teachers’ understanding 
of available teaching resources that have emerged along with the fast development of technology. 
Moreover, there has been recent research investigating and defining digital curriculum resources 
(e.g. Pepin, Choppin, Ruthven & Sinclair, 2017), as compared to ‘traditional’ curriculum resources 
(e.g. texts) (see for example, Pepin & Gueudet 2014). Thus in this study, we keep the word 
“resource” rather than “curriculum resource” or “digital resource” which allows us to hold a 
broader definition of teachers’ available resources. As Adler (2000) stated: a resource could be 
anything with the potential to “re-source” a teacher’s activity.  
Situating our work in DAD (Gueudet et al. 2012), we name resource as something encompassing 
materials and elements intervening “upstream” of teaching, such as emails, websites consulted, 
students’ work etc., or even the products of interactions with their colleagues (Pepin et al. 2016). 
According to DAD, the interactions between teachers and resources, including retrieving, selecting, 
adapting, saving and sharing, were defined as documentation work. The work with resources results 
in documents, which consist of resources and the corresponding schemes of resource usage. A 
scheme is defined by Vergnaud (2009, p. 88) as “the invariant organization of activity for a certain 
class of situations”, which include the following four components: goal(s) and anticipations that 
guide the activity, rules that retain “sequences of actions, information gathering, and controls”, 
operational invariants that is the “knowledge in action”, and inferences that allow to take in 
account the singularities of the situation. Documents are considered to be developed through 
documentational genesis and articulated in a structured documentation system. Correspondingly, the 
resource system relates to the “resource” part of the documentation system (without the scheme part 
of the documents), and analyzing the documentation system and its evolution permits the study of 
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the teacher’s professional development (Gueudet & Trouche 2009). We propose two continuous 
dimensions for analyzing teachers’ documentation work (see figure 1 below): (1) a time dimension, 
documentation work is a dynamic and continuous process along with teachers’ professional 
development (however, the research analysis can be situated in a single moment (static), or part of 
thread in this dynamic process (long-term)); and (2) an individual-collective dimension, 
documentation work can be studied with individual teachers, and/or considering collectives where 
the individual participates as a unit.  

 
Figure 1 Two dimensions for analyzing teachers’ documentation work 

Documentation work refers to the complex and interactive ways that teachers work with resources, 
in and out of class, individually and collectively (Gueudet et al. 2012), because the work of teachers 
is neither isolated nor individual, but culturally and socially situated (Gueudet, Pepin & Trouche 
2013): this is expressed in the “from individual to collective” continuum. Meanwhile, due to the 
mutual influences between teachers’ documentation work and their professional growth, 
documentation work is a dynamic process consisting of continuous moments to capture and study: 
this is expressed in the “time” continuum, from static to dynamic. The methodology and tools will 
be developed along with these two continua. 

Documentation expertise 
As we have found in our pilot study (Pepin, et al. 2016), teacher expertise and its development can 
be evidenced by particular ways of resource sharing and reflecting on their usage. Linking to this 
study, we defined documentation expertise (DE) as the expertise in teachers’ interactions with 
resources. As Berliner (1988) stated, expertise is “specific to a domain and developed over 
hundreds and thousand of hours”, teacher expertise takes different forms in different cultures and 
teachers’ working conditions exert a powerful influence on the development of their expertise 
(Berliner 2004). “Expertise is best thought of as a prototypical concept, bound together by the 
family resemblance that experts bear to one another” (p.16), and “there exists no well-defined 
standard that all experts meet and that no non-experts meet”(p.9) (Sternberg & Horvath, 1995). In 
the Chinese cultural context an expert mathematics teacher is expected to fulfill multiple roles: such 
as expertise in teaching, conducting research and publishing papers, and mentoring teachers, being 
a scholar of mathematics/theory/characteristics of learners/curriculum and exemplary models for 
students and colleagues (Yang 2013).  
As our specific interest is on teacher expertise with respect to lesson design with resources, we refer 
to Brown’s (2009) notion of Pedagogy Design Capacity (PDC) as “a teacher’s skill in perceiving 
affordances, making decisions, and following through plans” (p.29) (in science education). Later 
studies develop PDC from different aspects: by adapting it in analyzing teachers’ curriculum 
resources usage in classroom teaching (Remillard, to be published), by disaggregating PDC into 
different levels (Leshota & Adler, to be published). Pepin et al. (2017, b) defined, and refined, the 
notion of mathematics “teacher design capacity”, distinguishing the following three components: 
(1) the goal/s of the design activity, (2) a set of principles, and (3) reflection-in-action. These 
components kept a clear resemblance with Vergnaud’s conceptualization of operational knowledge 
and his notion of schemes. 
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The notion of DE we proposed in this study is similar to the PDC defined by Pepin et al. (2017, b), 
enlarging it by taking into account not only the lesson design phase and lesson implementation 
phase, but the whole process of documentation work: a life circle of producing a document through 
resource retrieving, selecting, organizing, modifying, adapting, implementing and sharing off, of an 
individual teacher, and also of her interactions in collectives. We assume DE as a type of teacher 
expertise towards resources, in both the resource conception (what could be a resource for the 
individual teacher), and the resources usage scheme (how the resource will be further developed 
and used). DE relates this specifically to ‘resources’, which makes it narrower than the expertise 
defined by Berliner (1988). It grows with teachers’ professional development over hundreds and 
thousands of hours, and there are no clear boundaries/levels of the process.  
In this way, we define DE as the knowledge and skills in interacting (retrieving, selecting, 
organizing, modifying, adapting, implementing and sharing off) with resources. According to the 
four components of scheme (a goal, rules of action, operational invariants, and inferences), DE 
locates more in the part of operational invariants, namely the conceptions-in-action and theorems 
–in-action (knowledge in action) as stated by Vergnaud (2009). We assume DE as a developing 
process consisting of developing states, which means that also novice teachers could have DE. We 
hypothesize that the collective work is likely to offer the teachers a platform to contribute to/from 
expertise.  
The Chinese Context 
In this section, we introduce the context of collective work in China, both the origin of culture and 
support from institutions. Then we explain the history of TRG and its regular working modes, and 
finally, the principles and procedures of MOKE, as an emblematic way of working collaboratively 
in China. 

The importance of collective work in Chinese culture 
In China working collectively is considered as essential. Confucius says that “Whenever walking in 
a company of several persons, among them must be someone worth learning from (三人行，必有
我师)”. From the cultural point-of-view the school-level working culture in China has been 
described as collective (Yang, 2013). Research on teacher education in China shows that Chinese 
teachers are benefiting from some school-based collective working means (An, Kulm & Wu 2004; 
Li & Huang 2008; Pepin et al. 2016; Wang 2013): they gain a deep understanding of basic 
mathematics and adequate pedagogical expertise through specific systemic structures.  
 

The regular structures of teachers’ collective work in schools 
The word “TRG” first appeared in Chinese Education Ministry regulation in 1952, aiming to “study 
and improve the way of teaching”. In 1957, the property and tasks of TRG were emphasized again 
and more clearly stated (Wang 2013). Since the 1990s, TRG undertook the work of carrying out 
post-1990 curriculum reform. From 2001, encouraged to participate in educational experiments, 
TRG slowly started some “real” research work, represented by “school-based research" (Gu & 
Wang 2006). Now the TRG has become the basic unit for teachers’ collective work in every school, 
the main platform where teaching resources are generated and shared through the regular collective 
activities. Generally, a TRG consists of teachers from the same discipline, such as mathematics 
TRG, or English TRG. In bigger schools, in addition to the TRG, there can be different Lesson 
Preparation Groups (LPG) based on grade, like a “mathematics LPG for grade 6”. In most of 
Chinese schools, teachers work full time, in a permanent office with their own office desk; teachers 
from the same LPG are usually organized to share the same office, which allows them to 
communicate and work collectively face-to-face often and conveniently.  
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MOKE: an emblematic activity of Chinese teachers’ collective work 
Among the Chinese studies of teacher expertise, several of these studies explored and defined 
teacher expertise in terms of stages (Berliner 1988, 2004), corresponding to a list of characteristics 
and roles, with common indictors towards collective work: e.g. being a leader in collectives with 
creative minds (Lian 2004); being an educator/mentor and moral/scholar example for other teachers 
(Yang 2013). This prototype way provides a “perfect” state, summing up almost each good quality. 
Moreover, they indicate that in the Chinese context teachers’ work and the issue of 
expertise/professional development is never an individual one – this calls for special attention to 
collective activities that mostly happen in TRG. 
The working modes of TRG could be classified into (1) “task-based activity”, and (2) “operation 
mode of diagnose-based activity” (Hu & Wang 2014). The former (1) is represented by collective 
design of resources, such as the development of school-based exercise books (a series of exercises 
collection or lesson plans produced by the teachers collectively in the same school, some are 
published and some are printed and adapted only within their school); whilst the latter (2) is 
embodied by MOKE (an colloquial expression of “collective lesson preparation” used among 
teachers, see in Chen (2006). MOKE consists of: 
(1) Individual lesson preparation by some teacher; 
(2) Lesson implementation in front of the collective (as an open class); 
(3) Collectively discussion seminar after the open class; 
(4) Individual lesson refinement and modification; 
(5) Repeat (2)-(4) till the lesson design reaches the expectation of most other teachers in the group; 
(6) Resulting resources (e.g. lesson plans; courseware) submitted to TRG and shared by all teachers 
in TRG.  
Several rounds of the process above constitute what is called a MOKE activity in China. 
Generally, the leader of TRG will announce the topic or task of each TRG activity one or two 
weeks before the formal TRG activity time. Teachers can attend the lectures or teacher training 
sessions, and/or participate in MOKE activities. MOKE is considered the most important way for 
teachers’ professional development (Hu &Wang 2013), especially for novice teachers (who are 
always asked to prepare open lessons) and experienced teachers (who are often expected to instruct 
the novices). In our study, an in-depth follow up of teachers’ collective activity was situated in a 
MOKE activity; details of the choice will be presented in the methodology part. 
 
Methodology 
Drawing on the DAD, we first present the methodology of reflective investigation of DAD, and 
then propose the notion of Documentation-working Mate for a better understanding of the 
influences of collective work. Finally, we present our research design.  

Reflective investigation 
Reflective investigation involves the teachers as part of the study throughout the whole data 
collection. Teachers’ reflections on their previous answers provide a link to previous data and hence 
a continuity aspect, and an opportunity to identify changes and developments. Four principles are 
emphasized: long-term follow-up; in- and out-of-class follow-up; broad collection of the material 
resources used produced throughout the follow-up; and reflective follow-up of the documentation 
work (Gueudet et al. 2013, p. 27). 
To know the landscape of teachers’ available resources, and how they organize and represent their 
resources, we drew on our pilot study (Pepin et al. 2016) and expanded the Schematics 
representation of Resource System (SRRS) to develop a specific tool, “Inferred Mapping of 
Resource System”(IMRS). This is a structured mapping of the teacher’s resource system drawn by 
the researcher first, based on the observation and the self-presentation of teachers’ available 
resources. Then, on the basis of the IMRS, a Reflective IMRS (R-IMRS) is developed through a 
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further interview where the teacher is asked to make modification/complementation and explanation 
on the IMRS. It should be noted that the IMRS and R-IMRS are not final representations, but can 
be improved, complemented, and reorganized continuously during the long-term follow up, along 
with different mathematics contents, and the development of teachers’ reflections on their own 
resources. 
Other tools were also developed for obtaining details of teachers’ collective interaction. An online 
“Reflective Investigation Box (RI Box)” (Wang, to be published; Rocha, to be published) was set up 
and shared between the researcher and the teachers. Here the researcher could observe the 
messages/resources shared among the teachers, or propose online interviews with the teacher/s. The 
choice of technology for supporting RI Box depends on the applications used by the teachers: in our 
study, we adapted Wechat (an instant social communication application with functions of resource 
sharing and group chatting) for this purpose. In addition, field notes of teacher activity observations 
and school visits (by the researcher) were also added. The combination of field notes and RI Box 
provides the possibility of a long-term follow-up of the teachers’ resources, for example, which 
resources are considered and incorporated, where these resources come from, and how they are 
integrated. 

Documentation-working Mate 
The notion of Documentation-working Mate (DWM) was proposed in order to better understand the 
influences of collectives on teachers’ documentation work. In our study, collective is a group of 
teachers in TRG. We define DWM as a person who works closely with the targeted teacher, with 
mutual influences on their documentation work and DE development. Mate (in the Oxford 
Dictionary) refers to “a fellow member of joint occupant of a specific thing, like table-mate” (with 
the “underlying concept being that of eating together)”. This indicates four characteristics of DWM: 
(1) s/he is chosen by the targeted teacher, not the researcher; (2) each teacher could have several 
DWMs, such as mentor/apprentice, trainer/trainee; (3) the most important indicator for choosing 
DWM is “interacting most frequently”; (4) unlike the notion of “peer” in the field of “peer 
education”(Turner & Shepherd, 1999), there is no boundary or constrains of age or education 
background or expertise levels for becoming DWM, they could be both advanced or novice 
teachers, or colleagues with different working experiences. 

Research Design 
In the school where we selected our targeted teachers, there were 12 mathematics teachers in the 
mathematics TRG, with three mathematics teachers in each grade (from grade 6 to grade 9). Each 
Tuesday afternoon was the regular time for collective TRG activities. We chose two teachers who 
worked closely and frequently as a mentor-apprentice relationship, Gao and Yao. According to the 
five-stage model of pedagogical expertise of Berliner (1988), Gao belonged to the group of expert 
teachers (with 24 years teaching experiences and ability to deal with teaching problems effectively 
and effortlessly), while Yao was a novice teacher (with less than two years’ working experience). 
Gao had been a mathematics teacher in middle school since 1993, and she was one of the most 
experienced teachers in her school. Compared with other mathematics teachers, she was not a very 
“traditional” teacher with professional training, because she never majored in mathematics, neither 
in her college education, nor in her undergraduate education (in 2003, she continued her bachelor 
study in education management after a “top-up exam“2). After graduation she started to work as a 
middle school mathematics teacher. She got her “first-class title” in 2000. She was a mathematics 
teacher of two classes in grade 8 when we conducted our data collection. She was the ex-leader of 
Mathematics TRG in her school, and she worked as the leader of Lesson Preparation Group in 
grade 8 then.  

                                                                            
2 An exam allows the students from vocational colleges to upgrade to university. 
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As for her DWM, Gao chose Yao as one of her DWMs, who worked as the apprentices of Gao 
since September 2015 after she graduated with a master degree of mathematics education. She 
taught two classes in grade 6. Although working in different grades with her master Gao, she 
always turned for Gao’s help and instructions when she met problems. In the interview for choosing 
a DWM, Yao also chose Gao as the first choice. The two-way choice between Gao and Yao helped 
us to select a smaller collective in their TRG, bringing the opportunities to see Gao’s expertise from 
Yao’s perspective, with the following tools: 
• 1) At the beginning of the follow-up, we spent a three-week full-day observation of Gao’s 

work in both her office and classroom teaching, with a particular interest in the resources 
Gao prepared and used for her classroom teaching, and also those she shared with her 
colleagues. 

• 2) For both Gao and Yao, we adapted the tools of IMRS and R-IMRS. We conducted an 
interview with each of them for one hour: about their working experiences especially with 
resources, their resources for classroom teaching, lesson preparation, and the collectives or 
persons who inspired their resources work. Then, the researcher drew the first version of 
IMRS based their self-presentation on resources. With the IMRS, the teachers were asked to 
modify and complement this IMRS through a further reflective interview. In this way, we 
got two versions of mapping of resource system for each teacher: IMRS and the R-IMRS. 

• 3) Between Gao and Yao, we filmed a series of videos on the collective MOKE activities. 
Generally each year (from March to April) in this school was the period when new teachers 
prepare and give open lessons. When Yao got this task, she was required to prepare it with 
the instructions of Gao. They conducted a total of three rounds of MOKE activities, and we 
filmed their discussions. 

In the following section, we analyze the data with respect to our research questions: (1) the 
elements of DE found in their documentation work and (2) the way that collective MOKE activity 
promotes the development of it.  
 
Findings 
Our analysis is based on the two dimensions of documentation work: (1) the elements of DE shown 
in the R-IMRSs at a given moment (static) by the individual teachers; and (2) the elements of DE 
and influences of the intense MOKE activities as collective work over a period of time.  

Analysis of R-IMRS 
In this section, we propose an analysis of teachers’ resource systems based on their R-IMRSs, and 
then a comparison of the results from a DE point of view.  
(1) Gao’s case 
We analyze the main features of Gao’s resource system, justifying our drawing with the follow-up 
interview. Then we focus on the changes and complements made by Gao herself in the R-IMRS. 
Finally, we infer some consequences of the analysis for the individual-collective dimension.  
- There exists a structure of resource “input” and resource “output” (see figure 2), which could be 
evidenced in Gao’s self-presentation of her resources: her resources for lesson preparation and 
classroom teaching are mainly in form of material, including official curriculum resources (e.g. 
textbook, teaching guidance book and exercise book along with textbook), various learning aide 
books3, and most importantly, the self-owned resources that she purchased and accumulated herself, 
which is the only part linking to her resource “output”, self-developed resources. She selected and 
                                                                            
3 Learning aid book is one type of learning aid materials, which is edited by some educators or teachers, 
mainly along with the teaching contents or exams, and could be bought in the bookstores. 
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accumulated the resources (i.e. the exercise items) from the learning-aide exercise books that she 
bought for the bookstore (she considered these as her own resources), and she developed the 
accumulated resources into school-based exercise books (printed and sent only to the students in her 
school) and published exam/exercise book (by national publishers and available in bookstores). 
TRG activities and participation in research projects with research institutions and superiors 
(Teaching Research Office in Pudong District) was also a way to reflect and show off her resources. 
 

 
Figure 2 The R-IMRS of Gao 

She used traditional material resources more than online digital ones; online resources (both from 
computer and cell phone) worked as supplementary resources. She said that although for her 
“resource” was “a kind of information” (cited in interview 1 with Gao), she was positively inclined 
towards traditional resources:  

 “I seldom use my computer, neither the software like GeoGebra, I prefer to draw graph on the 
blackboard with chalk and teaching instruments, so that the students can observe the drawing 
process with deeper impression” (cited in interview 1 with Gao, personal translation).  

She explained her scheme of using the material resources and those from the Internet:  
“With the development of cell phone, a lot of websites and forums have their own applications 
or Wechat official account, so I use cell phone more than computer, it is more convenient, look, I 
can take pictures with it and send it out at once” (cited in interview 1 with Gao, personal 
translation).  

She explained why she considered the online resources only as a supplement to her teaching 
resources, “because the contents is not specially for some specific lesson, for what I will teach each 
day.” (Cited in interview 1 with Gao, personal translation) 
She had a habit of systematically and efficiently accumulating and referencing her resources, which 
allowed her to be a resource-developer for others (both the students and the teachers). It was clear 
that she knew the learning aid materials market well because she bought a lot, and she insisted on 
visiting the bookstore at least once each semester, “to see whether there is any changes, because 
they modify it almost each year after the exams, if there is, I will buy them” (Cited in interview 2 
with Gao, personal translation). At the same time she also acknowledged and knew the feedbacks 
from the users – her students: With two classes of about 70 students to teach, and 10 lessons each 
week, Gao spent a large amount of hours (of her working day, from 7 am till 5 pm) on marking her 
students’ homework. She carefully selected the exercises and assigned to her students, “because 
there are too many choices for the students in the book markets.” (Cited in interview 2 with Gao, 
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personal translation). Subsequently, she collected all her students’ homework, checked one by one, 
marked each mistake, and asked the students to correct the mistakes in her office (vis-à-vis her 
classroom. In this way she identified and selected “truly valuable” (in terms of identification of 
misconceptions) exercises for students, and the experiences how to teach the students to learn from 
mistakes. She wrote down all the items in a paper notebook, and screened them to store in 
computers or share with others. 
 
 (2) Yao’s case 
The R-IMRS of Yao was less complex than Gao’s (see Figure 3): she considered resources as “the 
things available to be used for teaching” (cited in interview 1 with Yao). 

 
Figure 3 The R-IMRS of Yao 

- In her self-presentation there was a category of “available resources”: official curriculum 
resources (textbook and teaching guidance book that each teacher has); resources from computer 
and cell phone (mainly Wechat Group and Official Accounts); Resources from other persons (like 
Xia, Zhao, Gao), including “Zha Ba4” courseware which was shared by Gao. 
- Resources from collective work with other teachers occupied a large part in her resource system, 
which could be evidenced by the list of names in the left-down part, and also besides other 
resources, such as “Zha Ba” courseware, websites in the “computer” parts, she mentioned in detail 
who recommended these resources. 
- The usage of the resources she obtained from other teachers was mainly a kind of “imitation”, 
which could be evidenced in her explanation of the resources from Gao: she used the same series of 
learning aide books as homework for students in a same way; she prepared her lessons mainly 
reference on her observation on Gao’s lesson (where she kept Gao’s teaching procedures, examples, 
exercises etc.); she was also trying to follow the suggestions from Gao about how to collect and 
accumulate the exercises items from the learning aide books.  
 
 (3) A comparison of the two R-IMRSs 
In this section we will compare the two cases from an aspect of collective mutual benefit.  

                                                                            
4 “Zha Ba” is the name of a middle school in Zhabei district of Shanghai, “Zha Ba” courseware was 
developed collectively by the mathematics teachers in this middle school. 
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Gao and Yao were resources for each other. When we proposed the question of “in your teaching 
experience, who is the one who influence you most”, both Gao and Yao chose their masters, an 
experienced teacher who instructed them a lot at the beginning of their career. This was evidenced 
in Yao’s resource system: they appeared in the R-IMRS of each other, but in a different position, 
Gao for Yao was a main “human resource” who provided various resources continuously, while 
Yao for Gao was an “output” for providing suggestions and varying the effects: “When I instruct 
her, I also experience a reflection” (cited in interview 1 with Gao, our translation).  
Interactions with experienced teachers and participation in collective work were a main resource for 
the novice teacher, Yao. In her self-description of her available resources (see in Yao’s R-IMRS), 
she categorized her available resources according to the providers, with the specific suggestions of 
usage from these providers, which for her, is more like to obtain operational knowledge more 
directly.  
Technology hold a clear influences on teachers’ resource work and their resource system, and this 
could be evidenced by a social communicate software, Wechat, which appeared in both of their 
R-IMRSs: Gao introduced several favorite official accounts that often publish useful articles about 
mathematics teaching; while for Yao, besides the official accounts, she also introduced the Wechat 
groups, which is a group chatting function of Wechat, allowing teachers discussed online instantly 
in a same group. It also evidenced in the “resources output” of Gao’s R-IMRS, she often shared 
resources (like articles, exam items, or messages, pictures of her notes or exam papers etc.) in the 
group chatting, which for Yao was an important way to receive resources from other teachers. 
Reflecting on the knowledge-in-action (i.e. operational invariants), we could find some DE 
components from Gao: DE in systematically and efficiently resource accumulation by knowing well 
the learning aide material markets well and regular collection based on her homework marking 
experiences and feedbacks from the students; DE in sharing off resources as well as the usage by 
donating instructions face to face and sharing related articles online instantly; DE in using digital 
software such as GeoGra critically by considering the needs of the students’ better learning in 
process. 
In the following section, we pay particular attention to a moment of intense collective work 
between Gao and Yao, and analyze how the two teachers could feed each other. 

An analysis of the MOKE activity 
The lesson to be prepared collectively in the MOKE activity we followed was assigned to Yao, 
entitled “the properties of inequality” (mathematics content in grade 6). It was Yao who decided the 
topic, with the recommendations/instructions of Gao (they could choose one topic that would 
possibly be taught during the MOKE period according to their teaching plan). The three rounds of 
MOKE activity resulted in three versions of lesson plan. Evidenced by the three lesson plans, the 
biggest changes appeared in the parts of “introduction or warming up activity” and “the 
chosen/difficulties of example items and exercises”. In this section, we choose some moments that 
promoted the changes in Yao’s lesson plan, and evidenced the elements of DE and the influences 
from collective interactions. 
- The consideration on combining the “difficulty” and students’ performance level ran through all 
the lesson design of Yao and Gao. According to the arrangement in the textbook, there should be 
three properties of inequality to be taught, but considering the performance and basics of the 
students (they were not top students), Gao suggested Yao to teach only the first one: “for a given 
inequality, when adding or subtracting a same number, the direction of the inequality sign will not 
change”. Her scheme of grouping the difficulties and the quantity of exercises for this lesson 
appeared to be: “(She suggested me to) try the most typical and difficult items and adjust them 
according to the reactions of the students” (interview 3 with Yao, our translation). Gao added 
several exercise items in Yao’s first lesson plan, and then she suggested deleting almost 1/3 of them 
after she felt the students were tried and less interested after her observation. 
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- Yao showed her advantage, as a young teacher with sensitive towards news, in the choice of the 
introduction activity for the students: according to the lesson plan, Yao planed to introduce the 
concept of “in-equality” through an activity, she designed and tried two but Gao was not satisfied 
with the effects. In the last version Gao adapted the “air pollution index” that she saw in the metro 
screen everyday, combining the lesson topic with students’ daily life. This arrangement was highly 
appraised by the experienced teachers including Gao. Before this, Gao used to suggest to Yao to 
operate an experiment with a balance, and let the students observe. But she herself denied this 
arrangement, after Yao conducted this activity in the second round of MOKE, based on her 
observation on the students’ reactions and classroom atmosphere: “it is too far when you operate it, 
the students who sit behind were not listening to you, and there is also the problem of the weights, 
what if putting on different weights, like one side with 10g, and another side with 20g? The 
direction of the inequality did not change, when we put on different weighs… too complex…” 
(cited in Gao’s words in the 2nd MOKE, our translation). This process evidenced the mutual 
beneficiation for both of the novice and experienced teachers. 
As a DWM of Yao, in the MOKE activity, Gao was not only a master in instructing her, but also a 
co-defender with Yao, in front of other teachers, especially in the 3rd MOKE discussion. Among the 
exercises in the students’ work sheet, there was an exercise about “the properties of equality”, so a 
teacher doubted that this was off-topic. Gao insisted to maintain this exercise: “I would never 
prepare a lesson only for a lesson, knowledge should never be isolated, it should be linked to the 
previous, and we should remind the students do not forget the previous knowledge when they learn 
new things.” (cited in Gao’s words in the 3rd MOKE discussion, our translation). This evidenced 
Gao’s principles or conceptions towards open lesson, and also her roles of both the instructor in 
lesson design and resource co-producer.  
Some details of how Gao instructed the other teachers were also found. For instance, she observed 
Yao’s lesson in the first round of MOKE, and took pictures of Yao’s blackboard writing, then she 
showed this picture to Yao in the following discussion: there was a mistake in her writing and she 
emphasized that “teachers’ blackboard writing must be precise, because it is the model for students’ 
note, if you write wrongly, they will misunderstand.” (cited in Gao’s words in the 1st MOKE 
discussion, evidenced also in Gao’s R-IMRS).  
Reflecting on the knowledge-in-action (i.e. operational invariants), some elements of DE could be 
evidenced from Gao: (1) When designing a lesson, the principle of ‘stick to the topic’ is important, 
but the needs of students is deserved more attention, any open lesson should be designed and linked 
with what the students had learned before; (2) when instructing novice teachers’ teaching practices, 
knowing the characters of teachers is an important precondition for giving specific instructions, Gao 
stated in her 1st interview that “Novice teachers are easier to make mistakes in details like wrong 
blackboard writing or inaccuracy in oral expression.” To arise Yao’s self-reflection, she took 
pictures and notes then showed the ‘evidences’ to Yao in the following discussion. 

Discussion of results and conclusions 
By analyzing the static R-IMRS and dynamic MOKE activity from the aspects of individual and 
collective activity, we draw inspiration from the topics in Symposium C: 
About the issue of “process teachers’ engage with resources in lesson design”: The lesson design 
for teachers was not an isolated task, but organized into their “lived” and developing documentation 
system. For both Yao and Gao, they “perceive[d] and interpret[ed] existing resources, evaluate[d] 
the constraints of the classroom setting, balance[d] trade offs and devise[d] strategies (Brown 2009, 
p. 18)”, and this process was an exchange between their practice and their documentation systems: 
they gained new resources, or new usage schemes. 
About the issue of “influences from collective to teachers’ design decisions”: The process of 
MOKE, for all actors, was a crucial way to influence others, and each other. For the novice teacher, 
Yao, she experienced the complete process of carefully preparing a good lesson, with many 
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ideas/suggestions/reminders from other members of her TRG. For the experienced teacher, Gao, she 
gave suggestions, observed the effects of implantation, and provided new suggestions for 
modification in her reflective comments, thus she contributed at a level of instructor and spectator. 
This evidenced the way of Chinese mathematics teachers obtaining “deep understanding of basic 
mathematics and adequate pedagogical expertise through some school-based means” (Wang 2013). 
In this study, we have explored DE through the lens of Vergnaud’s knowledge-in-action (i.e. 
operational invariants), by studying how the teachers expressed and organized their resource 
systems individually, and how they interacted with their DWMs collectively. Hence, for us two 
issues emerge: (1) the (notion of) DWM was useful for better understanding teachers’ specific 
resource usage scheme, by comparing their resource system and their usage of specific resources in 
similar situations; and (2) in terms of DE, there were selected resource usages/ working habits with 
resources that supported their resource work in an efficient way. However, in order to obtain deeper 
understandings of the knowledge underpinning these actions (that were easy to observe), we claim 
new tools needed to be developed that could be useful, such as interviews that allowed for deeper 
reflection (based on the R-IMRS, for example), or logbooks for resource usage reflection (e.g. a 
designed table with the information of resources and its usage to be filled by the teachers daily).  
A more developed and refined definition of DE with specific components and structure, as well as 
the elements for developing DE, is still in progress. Further follow up of mathematics teachers (in 
France and China) and related studies will be conducted to investigate DE further.  
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RESOURCES FOR TEACHING:  
SUPPORTING A MEXICAN TEACHER’S LEARNING 

JANA VISNOVSKA and JOSÉ LUIS CORTINA 
Abstract 
We analyze the role played by a teaching resource in effectively supporting a professional 
development collaboration with Irene, a Mexican public-school teacher. The resource is an 
instructional sequence on fractions that was developed through a series of design experiments in 
Mexican classrooms. As a result of this collaboration, Irene modified significantly her instructional 
practices. We discuss how the instructional sequence contributed to Irene’s renewed view of a 
mathematics classroom by providing her with guidance that was explicit, specific, and achievable.  
Introduction 
Mathematics teaching is not the same around the world. National educational systems have their 
unique histories and are organized differently. Mathematics teachers work under different 
institutional conditions, receive dissimilar opportunities for their professional development, and 
engage with students whose cultural, social, and educational backgrounds often vary substantially.  

We explore the case of a Mexican public-school teacher, Irene, who agreed to collaborate with us in 
a dual design experiment (Gravemeijer and van Eerde 2009), aimed at supporting both her 
professional development as a mathematics teacher, and her fifth-grade students’ understanding of 
measurement and fractions. As a result of this collaboration, Irene modified significantly her 
instructional practices. In addition, she successfully supported her fifth-grade students in making 
sense of important mathematical ideas. This was especially significant given that very few Mexican 
children seem to get a fair opportunity to understand the targeted ideas as they go through 
compulsory education.  
In this paper, we analyze the role played by an instructional resource in effectively supporting the 
professional development collaboration with Irene (cf. Pepin 2018). The resource in question is not 
a printed textbook, but an instructional sequence on fractions as measures. We elucidate the 
difference and discuss how the instructional sequence contributed to Irene’s renewed view of a 
mathematics classroom by providing her with guidance that was explicit, specific, and achievable.  
After we situate our study, we introduce the instructional sequence, the key principles that guided 
its design, and anticipations for its use. We then overview the dual design experiment, focusing on 
its professional development component and outcomes resulting from Irene’s work in her 
classroom. Finally, we introduce our analysis of supports that facilitated Irene’s transition to more 
ambitious and equitable instructional practice (Jackson, Gibbons, and Sharpe 2017). 
Background 
To situate our contribution, we refer to the state of mathematical learning in Mexico, particularly 
with regard to pupils living in harsh social and economic circumstance. For more than fifteen years, 
national and international assessments have shown a rather disturbing image. For instance, in a 
recent assessment conducted by the National Institute of Educational Evaluation (Instituto Nacional 
para la Evaluación de la Educación 2015b), 60.5% of sixth graders perform in mathematics below 
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the “basic” level. The data also shows that the great majority of those low performing pupils are the 
children of families living in poverty.  
Studies in which instructional resources are developed are not often situated in severely 
underprivileged classrooms, but teachers in these classrooms require support. Moreover, such 
classrooms are not unique to Mexico. Data form PISA (Organisation for Economic Co-operation 
and Development 2013) suggests that just within Latin America, where the ICMT took place, 
Argentina, Brazil, Chile, Colombia, Costa Rica, Peru, and Uruguay face similar challenges.  
In Mexico, more than a decade of efforts at the public policy level included changing the 
curriculum, developing new official textbooks, implementing high-stakes tests, and establishing 
programs of special rewards for good teachers. Yet, these efforts did not result in a clear indication 
of improvement of students’ learning or performance. In this context, we hope to systematically 
explore the role that instructional sequences that are a product of careful design and 
experimentation in classrooms, can play in supporting teachers who work with low performing 
students. We situate our contribution within the space of teachers’ resources (Trouche and Fan 
2018) and discuss implications of our analysis for conceptualization of educative curriculum 
materials (Davis and Krajcik 2005) designed for these teachers. 

THE INSTRUCTIONAL SEQUENCE 
We developed the instructional sequence on fractions as measures (Cortina, Visnovska, and Zúñiga 
2014, 2015) to respond to concerns about limitations in the mathematical competence that most 
Mexican students achieve in their formal education. The results from both national and international 
assessments indicate that very few Mexican students develop the necessary mathematical 
understandings to mathematize and solve problems that involve continuous magnitudes, or require 
the use of rational numbers or multiplicative reasoning. For instance, in PISA 2012 (Organisation 
for Economic Co-operation and Development 2013) only 17% of Mexican sixteen-year-olds 
achieved proficiency levels (Levels 3 and above) that involve ability to handle percentages, 
fractions, and decimal numbers, and to work with proportional relationships. In terms of 
quantitative literacy (Steen 2001), this suggests that the majority of Mexican children leave 
schooling able to soundly deal with only a few types of quantitative situations – those limited to 
natural numbers, additive relations, and discreet quantities.  
The instructional sequence was developed through a series of classroom design experiments in 
Mexican classrooms, following Cobb and colleagues’ methodological guidelines (Gravemeijer & 
Cobb 2006). Framed by the design theory of Realistic Mathematics Education (RME; Gravemeijer 
1994), the sequence entails classroom activities that are experientially real for students, can guide 
them to reinvent mathematics by bringing in their everyday experiences, and provide the students 
with opportunities to create their own mathematical models (Cobb 2003). 
In addition, the sequence was developed under the assumption that teachers necessarily adjust the 
instructional resources they use to the actual circumstances that they encounter in their classrooms. 
Hence, the sequence was not conceived as an instructional asset that could influence students’ 
learning directly. Instead, it was developed as a resource for supporting teachers in pursuing a 
fruitful instructional agenda (Cobb, Zhao, and Visnovska 2008).  
As an instructional resource, the instructional sequence is not a printed collection of lessons, 
problems, and exercises that a teacher and her students can follow. Instead, it outlines a progression 
of students’ learning goals, along with the rationale for this progression, which includes the means 
of supporting the students’ learning at each step. Following RME, the purpose of this rationale is to 
support the teacher in making informed instructional decisions as she adjusts the instructional 
activities to the contingencies she encounters in her classroom. This would include decisions such 
as when to start pursuing a new learning goal and how to do it.  
The instructional sequence on fractions as measures is intended to support a classroom community 
in reinventing length measurement, including the complexities of measuring the reminders of units. 
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The students are first expected to develop the need to standardize the unit that serves as a reference 
when measuring lengths. They then confront the problem of measuring the lengths that the 
reference unit does not cover exactly (i.e., remainders). Unit fractions are then introduced as a 
means of producing measurement subunits—smaller than the reference unit—in a systematic way. 
Within the sequence, it is expected that common fractions will come to be construed by students as 
quantities that express the number of times that a specific subunit was iterated when measuring a 
certain length. For instance, it is expected that the fraction 7/5 will come to be construed as seven 
iterations of the length of a subunit 1/5 as long as the reference unit. Finally, this way of construing 
fractions is expected to allow students to gauge the lengths that fractions account for as either being 
shorter than (e.g., 5/7), as long as (e.g., 7/7), or longer than (e.g., 7/5) the reference unit. The 
rationale for this sequence includes notions that typically fall within teacher’s pedagogical 
repertoire, such as how classroom activities within the sequence can be organized to be most 
productive and why, and what types of classroom discourse made it possible for students to 
progress in past trials.  
Working in four different Mexican schools, we have documented how the instructional sequence 
can be a powerful resource in supporting low-achieving and disenfranchised children, in developing 
relatively sophisticated understandings of fractions as measures (Cortina, Visnovska & Zúñiga 
2014). These understandings include the inverse order relation amongst unit fractions (Tzur 2007), 
and fractions as numbers that may account for the size of quantities bigger than one unit (Norton 
and Hackenberg 2010). We have also recognized that the effective use of the instructional sequence 
in Mexican classrooms entails great teaching challenges. It requires making instructional decisions 
based on students’ reasoning, as well as supporting pupils to participate in ways that are new to 
them and often uncommon in their regular classrooms. They are expected to actively listen to what 
others say, ask questions, express non-understanding, and articulate and communicate their own 
thinking.  
Collaborating with Irene 
In several ways, Irene can be regarded as a typical Mexican elementary-school teacher. Almost all 
of her students were the children of low-income families, and most of them were low achievers in 
mathematics. Irene graduated from Mexico City’s Normal School, and became the first member of 
her family to be a teacher and to obtain a college-level degree. She was amongst the 68% of 
Mexican elementary school-teachers who are graduates of public normal schools, with no 
postgraduate education (Instituto Nacional para la Evaluación de la Educación 2015a).  
Throughout her sixteen-year teaching career, Irene had worked in public elementary schools located 
in the hilly western suburbs of Mexico City. As many other Mexican teachers, she rarely 
collaborated with her colleagues on issues directly related to instruction. As it is also typical, school 
authorities held her accountable mostly on matters concerning administrative issues, such as 
completing paperwork correctly and on time. She received no support for her teaching, but also a 
very little oversight of how she taught on a daily basis. Even though official regulations are rather 
restrictive in the Mexican educational system, Irene had relatively high autonomy in deciding what 
to teach, when to teach it, and how to teach it in her classrooms.  
In other ways, Irene can be regarded as an atypical Mexican teacher. She was amongst the few who 
held two teaching positions, one in a school with a morning shift (8am to 1pm) and the other in an 
afternoon shift (2 to 7pm). She was also a teacher who was unsatisfied with her students’ 
mathematical achievement, felt responsible for it, and believed that by furthering her education she 
could improve on what her students can learn.  
In 2014, Irene obtained a paid leave of absence in her morning-shift school position, to enroll in a 
master’s program at the National Pedagogical University (NPU). She continued with her teaching in 
the afternoons. Our collaboration with her commenced at the beginning of her master’s studies, 
with the second author as her academic adviser.  
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The NPU master’s program has a strong professional development orientation. It is expected that 
enrolled students’ research projects will further their capacity as mathematics teachers. The dual 
design experiment thus presented an ideal framework for supporting and researching Irene’s 
learning. It allowed us to collect data on Irene’s adoption of a new resource, while she conducted 
the classroom design experiment on fractions, for her master’s project, in her fifth-grade afternoon 
classroom. Irene obtained ethical clearance from the university and consent from the students, 
parents, and school administrators, to collect students’ work and videotape all the classroom 
sessions. 
Methodology  
The data collection for the dual design experiment primarily consisted of two design research logs. 
Irene’s planning and teaching log included elaborated lesson plans, in which she specified the 
learning goals for each upcoming classroom session, and the activities she planned to use. After 
each classroom session, Irene annotated her lesson plan, reflecting on classroom events. Irene also 
video-recorded all the teaching sessions, and collected copies of her students’ work.  
The second author produced a research log, which included design conjectures and notes related to 
both students’ and Irene’s learning. First, the log documented the second author and Irene’s 
conversations during weekly debriefing and planning meetings aimed at understanding students’ 
learning progress. Second, this log documented weekly to bi-weekly debriefing sessions between 
the two authors, which focused on Irene’s teaching and planning, and on the ways in which her 
work was supported. 
In the retrospective analysis of the data, we relied on an adaptation of the constant comparative 
method described by Cobb and Whitenack (1996) that involves testing and revising tentative 
conjectures while working through the data chronologically. As we analyzed new teaching 
episodes, we compared these with conjectured themes and categories. This process resulted in a set 
of the theoretical assertions that remained grounded in the data. For present purposes, we focused 
on the key episodes, which highlighted features of the instructional sequence on which Irene relied 
as she supported the learning of diverse learners in her classroom.  
Irene’s Classroom Design Experiment Overview 
In six one-hour weekly sessions with the second author, Irene first became acquainted with the 
instructional sequence, including how it was developed and used in prior classroom design 
experiments. She worked through all the instructional activities as a student, deepened her 
understanding of measurement and fractions, and got acquainted with the different aspects of 
instructional practices that place student mathematical reasoning at the center of decision-making in 
the classroom. She also became familiar with the classroom design experiment methodology and 
the importance of documenting her rationales for instructional decisions made in the process. 
Irene started to trial the instructional sequence in her fifth-grade classroom about four months into 
the school year. The results of her students’ initial assessment suggested that the great majority of 
them had made little progress in making sense of fractions as numbers that express quantities. For 
instance, all but four of her 20 students would not correctly and consistently recognize which of two 
fractions (e.g., 1/4 and 1/2) represented the bigger amount. Moreover, only two of her fifth-grade 
students seemed to recognize that improper fractions account for quantities that are bigger than one.  
Irene worked with the instructional sequence during 18 weekly sessions, each lasting about 35 
minutes. After each classroom session, she met with the second author, for one hour, to analyze the 
learning that took place, and plan for the upcoming session. Irene described the different ways in 
which students participated and how they reasoned during the instructional activities. When 
planning for the upcoming session, particular attention was placed on supporting the participation 
of the students that struggled the most.  
The results of a final written assessment suggested that, similar to other classrooms in which the 
instructional sequence had been used, Irene’s students developed relatively sophisticated 
understandings of fractions as measures. They could all easily and correctly compare unit fractions. 
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In addition, all but two students could readily gauge the size of a common fraction as being smaller 
than, as big as, or bigger than one, and could use this knowledge to make accurate estimates of 
where to place a fraction on a number line (Visnovska & Cortina 2017). 
Trialing the instructional sequence had a profound impact on Irene’s teaching. We became aware of 
this by noticing that in the final three instructional sessions, the students in Irene’s class made 
explanations that were clearer and more articulate than those made by students in any of the other 
groups in which we had worked with the instructional sequence. When we asked Irene about her 
thoughts on why this had happened, she responded that for several months now, she had been 
asking students to express non-understanding and to communicate their thoughts, regardless of 
what she was teaching. Whole-class conversations had become a common aspect of her everyday 
teaching, in all subject areas. She mentioned that she now felt uncomfortable teaching without 
knowing what her students were understanding, particularly those students who struggled the most.  
Many factors can indeed be recognized as being critical in influencing Irene’s teaching, including 
her dissatisfaction with the results she was obtaining, her willingness to learn, and the intense 
professional development support she received during her classroom design experiment. 
Nonetheless, as professional development facilitators, we recognize that the instructional sequence 
became a particularly powerful means of supporting Irene’s learning. In the following section, we 
identify and analyze some of the key roles that the sequence played.  
The instructional sequence as a resource for teaching 
To understand the supports the sequence provided, we need to discuss ways in which Irene’s 
instruction changed. At the beginning of the collaboration, Irene was mostly concerned about 
delivering instruction appropriately. She would decide what to do and how based on the contents 
specified in the program of studies, and on the lessons included in the official textbook and in other 
teaching resources that she regarded as valuable. She believed that if she taught “well,” her students 
would learn. Unfortunately, many of her students made little progress in mastering the content she 
taught. At the time of her entry to the masters’ program, the pending issue for her was to learn what 
kind of instruction would be more effective, and how can it be implemented properly. 
During the classroom design experiment, Irene’s focus on proper enactment was replaced by her 
emerging need to understand how her students were thinking. We illustrate this through an episode 
from the very beginning of her classroom design experiment, where Irene set out activities for her 
students to measure with body parts. She followed the instructional sequence where the first 
learning goal for students was to become aware of the shortcomings of using body parts as units of 
measure. Noticing these shortcomings was an important step for students to come to see the 
introduction of a standard (informal) measurement unit, the stick, as a reasonable innovation.  
The instructional activities Irene used in her classroom were introduced in a conversation about 
how people measured before there were rulers and tape measures. Based on the prior experiences in 
using the instructional sequence, it was expected that students would come to value practicality of 
measuring with body parts as they measured objects in the classroom with their hands. In addition, 
it was expected that some pupils would become aware of disadvantages in measuring with body 
parts. Specifically, Irene expected that some students would find it problematic that the class 
sometimes recorded different measures for the same measured length.  
For the most part, the session unfolded as Irene expected. Students had considered using body parts, 
and had eagerly engaged in measuring and recording the measures they made with their hands. 
However, in the whole-class conversation, students had only said positive things about measuring 
with body parts. Irene first interpreted this classroom session in a way consistent with the 
orientation she typically followed in her teaching. She considered that she did not properly 
implement the activities, since the students had not come up with the expected contributions. Even 
though the learning goal had not been achieved, she planned to proceed to activities in which 
students would now start using a standard unit of measure that she would introduce, a wooden stick.  
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In the debriefing session, the second author shared with Irene how the instructional sequence aims 
to structure students’ experience of instructional activities as being coherent. He explained how this 
aim guides us to only introduce a new tool such as the stick to students once they can see it as a 
solution to a problem that they already identified. Otherwise, from students’ perspective, an 
introduction of a new tool would break the storyline, and the tool would be seen as an object 
important to the teacher but with no particular value for students. Irene considered the classroom 
situation from the students’ perspective, and agreed to co-design and trial in her classroom 
additional instructional activities with the goal of helping her students recognize the shortcomings 
of measuring with body parts.  
When Irene and the second author met again, she reported that the instructional activities had 
worked fairly well. In one of them, she had told the students how a window had once broken in 
their school. The principal in the morning shift had measured its width, obtaining five hands. Then 
the principal of the afternoon shift had measured its width and obtained six hands. They were 
puzzled about which of them had made a mistake when measuring.  
Irene related that most of the students had recognized that both principals could have measured 
correctly, and that measuring with hands might thus not always be a good idea. Surprisingly to the 
second author, Irene did not yet want to proceed to the following mathematical goal (this would 
involve Irene asking how we could improve on measuring with hands, and later introducing a new 
measurement tool, the stick). Instead, she suspected that for several of her pupils the shortcomings 
of using non-standardized units of measure were unclear and she wanted to create additional 
scenarios in which the problem could be discussed. She now wanted to make sure that all her 
students had reached the first learning goal before pursuing a new one.  
From this point on, a significant shift in Irene’s orientation as a mathematics teacher was noticeable. 
She was now making instructional decisions based on what she considered her students were 
understanding and what they needed to learn next. She no longer based these on a plan about what 
had to be taught. For this shift to happen, it was critical that the instructional sequence she was 
trialing had an explicit rationale that specified a progression of clearly formulated and specific 
learning goals, and that these goals were achievable in her classroom. We now unpack each of these 
supports in turn.  
Learning goals: Explicit rationale 
For more than twenty years, the Ministry of Education has been providing Mexican teachers with 
“sequences of problem situations” that are expected “to arouse students’ interest, and invite children 
to reason mathematically, find ways of solving problems, and formulate arguments that validate 
their discoveries” (Secretaría de Educación Pública 2011, 67). Although teachers have been 
provided with guides that include many recommendations about how to best enact the sequences of 
problem situations in their classroom, and even to complement them, little information is usually 
offered to the teachers about the rationale that guided the design. For the most part, this knowledge 
is implicit in the provided sequences, as it seems to be the case with many carefully crafted 
instructional resources. According to Remillard (2018), accessibility to design rationales remains 
problematic even in resources that are accompanied by teaching guides, such as ones produced as 
part of NSF-funded textbook series in the US. 
The rationale for the instructional sequence that Irene trialed with her students was explicitly 
formulated during the process of initial design and subsequent modifications in a number of 
classrooms, and consists of conjectures about the collective mathematical development of the 
classroom community, and how this development can be supported. Availability of this rationale 
made it possible for the second author to discuss with Irene her role in supporting each of the 
learning goals that students were expected to sequentially achieve, and the resources on which she 
may draw in doing so, including the ideas that students generate. Had the instructional sequence 
been limited to a set of instructional activities, manipulatives, worksheets, and other tools, about 
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which we knew merely that they worked in other classrooms, it would have been very difficult to 
guide Irene in responding to the unexpected student ideas that emerged in her classroom.  
Learning goals: Specific and understandable  
In addition to availability of the rationale for the instructional sequence, it was also important that 
the student learning goals were specific. Efforts for reforming mathematics education, at least in 
Mexico, have often included comprehensive recommendations for students’ learning, such as to 
help pupils build their own knowledge and skills with sense and meaning (Secretaría de Educación 
Pública 2011). Although valuable at some level, goals that are this broad might not be of much use 
in making specific instructional decisions – including how to know whether to move to the next 
learning activity. 
During the debriefing after the initial instructional session, it was apparent that Irene understood the 
first learning goal, and that it was specific enough for her, so much so that she clearly recognized 
that it had not been reached. Had the goals been formulated in a way that was not easy for her to 
assess – because she found them to be vague or confusing – it would have been much harder for her 
to focus her instructional agenda on her students’ learning.  
The specificity of the learning goals positioned Irene as a teacher fully capable of reflecting 
accurately on her progress. Her advisor, in turn, became a collaborator in a shared problem-solving 
situation, rather than a person exerting judgment or control over her work. Irene identified that her 
students did not accomplish the learning goal. Discussing pedagogical issues related to the sequence 
rationale helped her re-evaluate why this was problematic, and realize that the problem would not 
be addressed by moving to the next type of measurement activity. Similarly to students realizing 
that different-sized hands were problematic, Irene’s refined awareness of the problem enabled her 
to look for a more adequate solution. The importance of sequentially achieving each of the learning 
goals then became more meaningful to her.  
Learning goals: Achievable in the classroom 
Once Irene recognized the importance of reaching the first learning goal, it was crucial that she also 
regarded it as achievable by all the students in her classroom. This seemed to have happened during 
the second instructional session, when she noticed how many of her students, including ones she 
did not expect to do so, started to realize that measuring with non-standardized units might not 
always be a good idea. At that point, she seems to have realized that, with more support, everyone 
in the classroom could come to the same conclusion. This realization allowed her to put aside her 
concern for what needed to be taught, and start making instructional decisions based on her 
observations and conjectures about what were her students understanding. Importantly, observing 
how they accomplished the first learning goal seems to have provided Irene with confidence in the 
instructional sequence, and a resolve that the ensuing goals could also be sequentially reached.  
It is important to point out that the achievement of Irene’s students on the first learning goal was not 
a fortuitous occurrence, by any means. As we mentioned before, the sequence she was trialing was 
a product of careful design and experimentation in classrooms with students very similar to hers. As 
designers, we were not only fairly confident that the expected goal was achievable for Irene’s 
students within several classroom sessions, we could also draw on the sequence rationale to advise 
Irene about various means of support that the sequence provided for her use (e.g., ways of creating 
additional problem scenarios). 
Concluding remarks  
The instructional sequence used in our professional development collaboration with Irene is a rather 
sophisticated resource for teaching, in many ways different from traditional textbooks. As noted 
throughout this paper, its effective use entails great challenges. It requires a kind of teaching that is 
complex, not typical, and involves substantial learning (Maaß & Artigue 2013).  
It might thus seem unsound to consider the instructional sequence on fractions as measures as a 
worthy resource in an educational system like the Mexican one, where ambitious and equitable 
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instructional practices are not typical. However, this kind of instruction can also be regarded as 
necessary for significant improvement in Mexican students’ mathematical understanding to take 
place, particularly for those that are living in harsh social and economic circumstance. From this 
perspective, our professional development collaboration with Irene can be seen as an illustrative 
case of a specific kind of resource that can successfully support Mexican teachers’ transition 
towards instructional practices that better support their students’ understanding of worthy 
mathematical ideas. We discussed several features of the instructional sequence on fractions as 
measures and how these facilitated teacher learning in relation to the instructional design rationale 
for the sequence. 
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HOW COMBINATORIAL SITUATIONS ARE REPRESENTED IN 
BRAZILIAN PRIMARY AND MIDDLE SCHOOL TEXTBOOKS1 

RUTE BORBA, MARILENA BITTAR, JULIANA MONTENEGRO and DARA 
SILVA  
Abstract 
In this article, results of a research concerning combinatorial situations in Brazilian primary and 
middle School textbooks are presented. The main concern are symbolic representations – such as 
natural language, drawings, tree diagrams and numerical expressions – and how they are dealt with 
in the study of Combinatorics. Three textbook collections, directed to students aged 6 to 14, were 
analysed, focusing on the combinatorial situations presented and the symbolic representations 
conversions required. In lower primary school textbooks, all the problems were Cartesian products. 
Combinatorial situations in upper primary school textbooks were better distributed and in middle 
school textbooks an even better distribution was presented with Cartesian products; arrangements, 
combinations and permutations. The distinctive properties of different combinatorial situations were 
not discussed neither with teachers nor with students. Positive aspects were observed, such as 
conversions of varied symbolic representations. However, a better distribution of problem types and 
more symbolic representation conversions still need to be present. 
 
Reasons for constant textbook analysis 
Textbooks in Brazil, as in many other countries, play a central role in mathematics teaching and 
learning and, in this sense, need to be constantly analysed in order to evaluate the quality of this 
resource used in classrooms. Constant textbook analysis is also justified by the way that textbooks 
reflect, as pointed out by Harries and Sutherland (1999),  
a) prospects of what mathematics is;  
b) what one needs to know about the use of mathematics; and  
c) how mathematics should be taught and learned. In this sense, when books are analysed, which 
and how mathematics is proposed can be analysed. 
Another reason for constant analysis is that textbooks assist in planning classroom activities 
throughout the school year and book collections suggest the development of content throughout 
schooling. They are also a source of continuing education for teachers (Gérard and Roegiers 1998). 
                                                                            
1  Research financed by CNPq (Conselho Nacional de Pesquisa), by Capes (Coordenação de 
Aperfeiçoamento de Pessoal de Nível Superior) and by Facepe (Fundação de Amparo à Ciência e Tecnologia 
de Pernambuco). Other related research can be found in http://geracaoufpe.blogspot.com.br/ 
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Thus, the importance of textbooks is reflected on what is effectively taught and what teachers also 
learn by using this resource. 
Carvalho and Lima (2010) highlight four poles, related to textbooks, that must be linked to produce 
effective teaching and learning processes: 1) the textbook and the author, 2) the teacher who uses 
the book, 3) the student user of the book and 4) the area of knowledge and concepts considered in 
the textbook. The present paper addresses the fourth pole, specifically knowledge concerning 
Combinatorics and, in particular, how combinatorial concepts are symbolically represented in 
textbooks. 
 
Textbook evaluation policy in Brazil 
The Brazilian National Textbook Programme (PNLD – Plano Nacional do Livro Didático), since 
the late 1990s, has been concerned with distinct aspects to be considered in textbook evaluations 
and Carvalho and Lima (2010) observed advances in textbook quality, due to this policy. The 
Brazilian Ministry of Education has provided textbook analysis by specialists in different areas 
(portuguese, mathematics, natural sciences and social sciences, amongst others) and information 
about textbooks is published in guides (Guia do Livro Didático). The guides help teachers in 
choosing the textbooks to be used in their classrooms, as the specialists describe what is contained 
in each textbook collection and also point out how the content is presented and the orientation 
provided. 
The guide for primary school provides information on textbook collections: one set of collections 
consisting of the volumes for 1st, 2nd and 3rd grades and another set of collections containing the 
volumes for 4th and 5th grades. There is also a guide for the four years of middle school and still 
another guide for the three grades of High School. 
In the initial evaluations, in the late nineties, many conceptual errors and methodological 
incoherencies were observed, such as theoretical approaches defended by the authors that were not 
coherent with the activities proposed to the pupils in the textbooks. Initially, most textbooks did not 
consider recent tendencies in mathematics education. In 1995, the main characteristics of the 
mathematical textbooks were: conceptual approach was based on memorization, learning was based 
on repetitive exercises, situations were not socially contextualised and students were led to 
mechanically use procedures – mainly formal algorithms with no valuing of personal strategies. 
Advances in textbook quality were observed in the editions that followed of the PNLD (Programa 
Nacional do Livro Didático – National Textbook Programme) and this constant evaluation can 
provide still more advances in the quality of mathematics teaching and learning. 
 
Symbolic representations as means to think about mathematical concepts 
An important aspect of analysis concerns how symbolic representations are dealt with in textbooks 
as means to think about mathematical concepts. As defended by Vergnaud (1996), symbolic 
representations have a very important role in mathematical thinking and aid problem solving, in 
particular when there is a large amount of data and/or the answer to the question requires several 
steps. 
We only have access to mathematical objects through its representations, which leads to the 
question: How not to confuse an object with its representation? Duval (1995) posed and answered 
this question by emphasising the importance of semiotic representation transformations: internal 
transformations in which the system is the same (treatment) and transformations in which there are 
processing changes to the system (conversion). By these different types of semiotic transformation, 
the same mathematical concept can be recognised and dealt with through different symbols and the 
students can learn that the same concept is present in different forms of representations. 
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Combinatorial situations in primary, middle and high school 
Concerning Combinatorics, Brazilian curriculum orientations, Brasil (1997), recommend the 
teaching and learning of different situations in all school levels (primary, middle and high school), 
i.e., Cartesian products (CP), arrangements (A), combinations (C) and permutations (P). The 
differences in these distinct combinatorial situations is related to choice and ordering of elements 
(Borba, 2010). In Cartesian products elements are chosen amongst distinct sets and in 
arrangements, combinations and permutations, elements are chosen from a single set of elements. 
The order of elements determines different possibilities in arrangements and permutations, the 
distinction being that permutations involve all the elements of the set. In Cartesian products and in 
combinations the order of elements does not determine distinct possibilities. 
Examples of each problem type are as follow (presented by Borba, Azevedo & Barreto 2015): 
Cartesian product: At the square dance three boys and four girls want to dance. If all the boys 
dance with all the girls, how many pairs will be formed? 
Simple permutation (without repetition): Calculate the number of anagrams that can be formed 
with the letters of the word LOVE. 
Simple arrangement: The semi-finals of the World Cup will be played by: Brazil, France, 
Germany and Argentina. In how many distinct ways can the three first places be formed? 
Simple combination: A school has nine teachers and five of them will represent the school in a 
congress. How many groups of five teachers can be formed? 
Combinatorial reasoning enables hypothetical deductive thinking and this, as other types of 
reasoning, needs a long period of time for its development. In this sense, Combinatorics teaching 
can start at the first years of primary school and continue until the final years of high school. 
Research (Borba, Pessoa, Barreto & Lima 2011 and Azevedo 2013) has shown that children in 
initial schooling are able to deal with different problem types: Cartesian products, arrangements, 
combinations and permutations, not using formulas but other efficient strategies – such as drawings 
and lists – and these investigations also show that older students using tree diagrams and other 
symbolic representations can build a solid understanding of formal Combinatorics procedures. 
Other investigations, presented in Borba, Pessoa & Rocha (2012), also show that some teachers 
present difficulties in solving combinatorial situations. In this sense, textbooks may provide 
continuing education to enable, conceptually and pedagogically, teachers of all school levels to 
teach Combinatorics. 
 
Investigating how combinatorial situations are represented in primary and middle 
school textbooks 
This study analyses three textbook collections: directed to lower primary school (1st, 2nd and 3rd 
grades), to upper primary school (4th and 5th grades) and to middle school (6th to 9th grades).2 These 
collections are directed, respectively, to children aged 6, 7 and 8; to 9 and 10 year-olds; and to 
students aged 11 to 14. The analyses concern which combinatorial situations are presented and what 
symbolic representations conversions are required.  
 
How combinatorial situations are proposed in textbooks 
Concerning the occurrences of combinatorial situations, 25 situations were observed in the lower 
primary school textbooks, 75 in the upper primary school textbooks and 58 in the middle school 
textbooks. This distribution is, in some way, surprising because it is expected that more situations 
be presented in middle school textbooks. However, more situations were presented in upper primary 
school, that is when multiplicative problems are formally introduced. It would be better that more 

                                                                            
2 The research also involved the analysis of the high school collection (directed to students aged 15 to 17), 
but this analysis was not yet concluded at the time of ICMT 2.  
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combinatorial situations be presented in middle school, preparing students for the future use of 
more formal procedures in high school. 
Table 1 shows how combinatorial problems are distributed along the three textbook collections. 
 

School grades/  
Problem type / 

Cartesian 
Products 

Combinations Permutations Arrangements 

Lower  
primary school 

100% - - - 

Upper  
primary school 

54% 36% 10% - 

Middle school 32% 22% 24% 22% 
Table 1 – Combinatorial problems distribution in the collections analysed 

 
Although it is a positive finding that combinatorial situations are dealt with in lower primary school 
textbooks, as recommended in the national curriculum orientations (Brasil 1997) and reinforced by 
Borba (2010), a negative aspect was observed: 100% of the problems were of one only kind: 
Cartesian products. Combinatorial situations in upper primary school textbooks were better 
distributed amongst Cartesian products; combinations and permutations. However, no 
arrangements were presented. In middle school textbooks, an even better distribution was presented 
with problems of all four types. This is what research results ((Borba, Pessoa, Barreto & Lima 2011 
and Azevedo 2013) have pointed out: that in the teaching and learning of Combinatorics distinct 
combinatorial situations can and must be worked with the students of all school levels. 
Despite the variation of problem types, neither teachers nor students are alerted that there are 
different combinatorial situations that have distinctive properties. This is necessary, especially in 
teacher manuals, so that the teachers are aware of the distinct situations posed to students and how 
they can deal with different combinatorial relations. In this way, textbooks can aid teachers to 
overcome their difficulties in solving problems in Combinatorics, as pointed out by Borba, Pessoa 
& Rocha (2012), and also help them in the teaching of this area in mathematics. The textbooks, 
thus, can be a source continuing education – as pointed out by Gérard and Roegiers (1998).  
Most of the combinatorial situations are proposed in chapters that deal with Numbers and 
Operations. If presented in other chapters (Measurements, Geometry or Information Processing) 
combinatorial problems are presented in sections aimed at revising subjects already studied. If the 
problem posed is a Cartesian product, the situation is presented in a section that deals with 
multiplication. In other parts of the textbooks there are some combinations, permutations and 
arrangements. In this sense, one recommendation for authors would be to present combinatorial 
situations in other parts of the textbook, in order to defend the idea of the presence of 
Combinatorics in a broad sense.  
Conversions of symbolic representations in textbooks’ combinatorial situations 
In the textbook collections analysed, all problems involve at least one conversion being the most 
common converting natural language and drawing into numerical expression, usually a 
multiplication that determines the total number of possibilities in a combinatorial situation. It is also 
common to convert natural language and drawing to list, especially in lower and upper primary 
school. 
Presenting problems in only natural language and asking to convert data to lists or to numerical 
expressions was not as frequent (only 27% of the activities) in primary school textbooks but was 
very frequent (88%) in middle school textbooks. Early schooling textbooks tend to use natural 
language with drawings, tree diagrams or tables to aid the understanding of combinatorial 
situations. These representations are very appropriate for primary school children. Tree diagrams 
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and tables are proposed mainly with Cartesian products, but not commonly for other types of 
combinatorial situations. In particular, Azevedo (2013) and Borba, Azevedo and Barreto (2015) 
showed that tree diagrams are appropriate for solving simple combinatorial problems of the four 
types: Cartesian Products, arrangements, combinations and permutations. Commonly in primary 
school textbooks some of the situations proposed involve multiple conversions, such as natural 
language and drawing to list and numerical expression. Figure 1 shows two examples from the 6th 
grade textbook. The first problem is presented in natural language and the conversion requested is 
to a list (Problem 45: How many 2 digit numbers, without repetition in the same number are there 
using the digits 1,3,5 &7?) The second problem is presented in natural language and drawing and a 
list is also requested (Problem 46: How many different ways, in relation to order, can three people 
sit in a 3 seat sofa?)  

 
Figure 1 – Conversions for natural language and natural language and drawing to lists. 

Other conversions are presented or requested in the problems shown in Figures 2 and 3, also from 
the 6th grade textbook. In the first of these examples the conversion is from natural language to tree 
diagram and to numerical expression. From four different fruits and three glass sizes, the tree 
diagram and the numerical expression (4 x 3) present the answer: 12 distinct possibilities. In the 
second example the conversion requested is from natural language to table and to numerical 
expression. With three types of shorts (A, B and C) and two colours (red and blue) the table and the 
numerical expression (3 x 2) represent the total (6) of possibilities. The following request is a 
generalization: How many are the possibilities of combinations from four types and three colours of 
shorts? 
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Figure 2 – Conversion for natural language to tree diagram and to numerical expression. 

 
Figure 3 – Conversion for natural language to table and to numerical expression. 

A final example, from the 9th grade textbook, is presented in Figure 4 in which natural language and 
drawing is converted to a table, to numerical expression and a tree diagram. 
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Figure 4 – Conversion for natural language and drawing to table, numerical expression and tree diagram. 

A summary of the analysis is that positive aspects were observed in combinatorial situations 
proposed in the textbooks, such as conversions of varied symbolic representations, but a better 
distribution of problem types and more symbolic representation conversions still need to be present 
in the books. This better distribution and more conversions can allow opportunities to discuss 
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different types of combinatorial situations and encourage the use of varied symbolic representations 
to deal with Combinatorial problems. 
Conclusions 
As main conclusions, we reinforce statements previously made: 

• Transformations of semiotic representations are necessary in pupil’s conceptual 
development (Duval 1995) and need to be addressed in textbooks.  

• In combinatorial situations, conversions of one form of representation to another allows 
students to recognize common combinatorial relations present in different problem 
types: arrangements, combinations, permutations and Cartesian products.  

Positive aspects were observed in the textbooks’ Combinatoric activities proposed – such as 
multiple representations of situations – but a wider range of problem types and symbolic 
representation conversions still need to be present in textbooks for a broader development of 
combinatorial reasoning. The study is in progress, analysing the combinatorial situations proposed 
in high school and this last stage of the research will allow a still better understanding of how 
symbolic representations dealt with in textbooks can allow a wider development of combinatorial 
reasoning in basic schooling. 
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ON PREVALENCE OF IMAGES IN HIGH SCHOOL GEOMETRY 
TEXTBOOKS 

MEGAN CANNON and MILE KRAJCEVSKI 
Abstract 
Despite ample evidence that images aid in guiding our intuition and designing a logical chain of 
arguments for proving process, there is a lack of research on how to explicitly formulate the 
characteristics of an image that fosters the cognitive process. We examine the visual representations 
of triangles, parallel lines and transversals, parallelograms, and trapezoids in 14 geometry 
textbooks, focusing on the corresponding sections in each of these textbooks. After defining a typical 
image in each category of the above listed mathematical notions, we determine the percentage of the 
typical images among all images in the lesson and exercise portion of each textbook. Results show 
the percentage of typical images among all images in each section varies from 52% in the category 
of parallel lines and transversals to 75% in the category of trapezoids. We indicate some confusing 
characteristics stemming from typical images, and provide suggestions for overcoming these 
obstacles.  
 

On Visualization 
As Phillips, Norris, and Macnab (2010, p.22) noted in their review of the notion of visualization, 
many terms –including visual aid, image, and visual literacy- have been used frequently and 
interchangeably throughout the literature. They also indicate Bishop’s (1989) distinction between 
the noun and the verb forms of visualization. For example, Zimmerman and Cunningham’s 1991 
Editor’s Introduction provides a definition of visualization as a verb, meant to “describe the process 
of producing or using geometrical or graphical representations of mathematical concepts, principles 
or problems, whether hand drawn or computer generated” (p. 1). Similarly Clements (2014) 
describes visualization, as “something which someone does in one’s mind-it is a personal process 
that assumes that the person involved is developing or using a mental image” (p.181). Presmeg 
(2006) states that the method of “visualization is taken to include processes of constructing and 
transforming both visual mental imagery and all of the inscriptions of a spatial nature that may be 
implicated in doing mathematics” (p. 2). On the other hand, the noun directs our attention to the 
product, the object, the ‘what’ of visualization, the visual image. After examining various 
definitions in the research literature from 1974 to 2009, Phillips at al. (2010) found 23 explicit 
definitions pertaining to different uses of the term visualization. They divided these into three 
categories: the category in which visualization was used as a noun and referred to as an object 
(visualization object) and two other categories in which visualization was used as a verb and 
referred to as a process, in so called introspective visualization and interpretive visualization. We 
adopt their definition of visualization objects as “physical objects that are viewed and interpreted by 
a person for the purpose of understanding something other than the object itself. These objects can 
be pictures, 3D representations, schematic representations, animations, etc. Other sensory data such 
as sound can be integral part of these objects and the objects may appear on many media such as 
paper, computer screens, and slides” (Phillips et al. 2010, p. 26).  
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We also found Tall and Vinner’s term of concept image to be particularly useful in our analysis of 
the overuse of some images in geometry textbooks. They defined the term concept image as “the 
total cognitive structure that is associated with the concept, which includes all the mental pictures 
and associated properties and processes. It is build up over the years through experiences of all 
kinds, changing as the individual meets new stimuli and matures” (Tall & Vinner 1981, p.152) 
They contrasted this notion with the notion of concept definition, which is a “form of words used to 
specify that concept” (ibid., p. 152). One of the challenges associated with creating valuable 
concept image is the struggle of trying to sort whether images are or are not relevant to be included 
in the set comprising the concept image (Vinner & Dreyfus 1989). This difficulty in determining 
relevance is problematic because a concept image is considered functional only when it allows a 
student to classify an example or a non-example (Gutierrez & Jaime 1999). 
A specific type of concept image is a prototype, also referred to as a prototypical image (we show 
some prototypes in Figure 1). A prototype is the most generic representation of an object from a 
category of objects. Prototypes are particularly useful in the cognitive process because they allow 
students to attribute properties to all objects in a given category of objects using one single 
representative of the group.   

 
Figure 1: Example prototypes of a parallelogram, triangle, and trapezoid 

Prototypical images are useful for classifying groups of mathematical objects, but they may also 
present challenges for students who inappropriately utilize them and assume their properties are 
shared by every element of the class. Prototypes can interfere with identification of somewhat 
atypical examples (Presmeg 1986).  For example, if students are used to seeing most trapezoids 
drawn to look isosceles, they may not recognize other quadrilaterals that still belong to the category 
of trapezoids.  
Geometry textbooks often present only the most prototypical shapes and lack a sufficient number of 
non-standard examples (Cunningham & Roberts 2010). If a visual representation of a certain object 
is always presented in the same way, students will have difficulty recognizing the object or 
identifying some of its properties when this object arises in a problem or application. This may lead 
students to form inadequate concept images of an object by attributing characteristics like relative 
position of a figure to the actual properties of the object. As an example from geometry textbooks, 
altitude of a triangle is often presented as in the left-most triangle of Figure 2. So, when students 
encounter a triangle like either of the two triangles on the right in Figure 2, they may have difficulty 
indicating or drawing the altitudes of these triangles. 
 

              
Figure 2: Representations of altitudes of triangles 

The Role of Visualization in Problem Solving 
Research in mathematics education demonstrates that visualization can aid students and 
mathematicians in problem solving (Lakin & Simon 1987), reasoning (Presmeg 1992), showing 
relationships between concepts (Phillips, Norris & Macnab 2010), discovering mathematical ideas 
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(Zimmerman & Cunningham 1991), offering intuitive visual evidence (Duval 2006), and possibly 
even providing basic proofs (Arcavi 2003).  
According to Presmeg (1986), “A visual method of solution is one that involves visual imagery, 
with or without a diagram, as an essential part of the method of solution, even if reasoning or 
algebraic methods are also employed” (p. 42). This definition is contrary to what one might expect 
of as a “visual method” in that a visual representation does not need to be drawn, only imagined as 
assistance to the solution. In other words, visual processing could be useful for solving some 
problems that are seemingly nonvisual (Presmeg 1992).  
Visualization is an important component of the critical thinking process. When working on a 
mathematical puzzle or a problem, many students innately tend to use visual representations as a 
reasoning tool (Lakin & Simon 1987). These representations may take the form of sketches on 
paper, drawings on a whiteboard or chalkboard, or visualizations using dynamic geometry software.  
Students may also use internal or introspective visualization, without producing a material object by 
transforming images in their mind. 
Visualization promotes a deeper conceptual understanding of certain mathematical ideas. For 
example, in Figure 3, by taking a parallelogram and reconfiguring it to produce a rectangle, we give 
visual explanation of the area formula for parallelograms. For many students, this method of 
thinking comes naturally, but for others it takes time and practice. The process of visualization is a 
powerful tool for comprehension (Zimmerman & Cunningham 1991).  
 

 
Figure 3: Visual method for demonstrating how area of a trapezoid relates to area of a rectangle 

Challenges Using Visualization 
One problem facing students is the phenomenon of compartmentalization, occurring when students 
have conflicting schemes or concept images and therefore may provide inconsistent answers or 
solutions. For example, if a student thinks of a parabola as a curve that is “opening upward” and 
then inappropriately applies that mental image to a problem where a “downward opening” parabola 
would be applicable. Both mental images are images of parabolas, but only one variation is 
currently appropriate. Vinner and Dreyfus (1989) completed a quantitative study on concept images 
of definitions of functions involving 271 college students and 36 mathematics teachers. In one 
particular example, their study found 56% of students struggled with the problem of 
compartmentalization, causing them to provide somewhat conflicting responses to questions.  
Presmeg (1992) asserted that many of the difficulties experienced by visualizers are related to the 
one-case concreteness of an image prototype that students use (p.603). This one-case correctness 
occurs when a student observes that a particular property holds for a particular object and then 
incorrectly generalizes this property to the whole class of objects. 
Nardi (2014) expanded on the issue of compartmentalization and added a list of challenges most 
commonly encountered by students: “The one-case concreteness of an image may be tied to 
irrelevant details or introduce false information, a prototypical image may induce inflexible 
thinking, an uncontrollable image may persist, thus preventing more fruitful avenues of thought, 
and imagery needs to link with rigorous analytical thought processes to be effective.” (p. 213). 
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Using visualization to reinforce the cognitive process, supports students' comprehension of the 
mathematical formalism, guides a successful proof strategy, helps students understand when their 
intuition is misleading, and helps students appreciate concepts without the use of a mathematical 
formalism (Arcavi, 2003). Visualization needs to be combined with critical thinking.  If imagery is 
not linked to analytical thinking the result can be harmful to students (Presmeg 1986). The use of 
imagery will reach its full potential when it is used to benefit the abstraction of mathematics 
(Presmeg 1992).  
Technology provides an opportunity to benefit from dynamic imagery by using visualization with 
incorporated movement. Dynamic Geometry software such as The Geometer’s Sketchpad 
(www.dynamicgeometry.com) or GeoGebra (www.geogebra.org) can use movement to 
demonstrate how properties in images are preserved or changed (Guvan & Kosa 2008). Figure 4 
shows how GeoGebra can be used to illustrate the Inscribed Angle Theorem. GeoGebra allows 
students to construct an angle inscribed in an arc, and drag the vertex of the angle to different points 
along the circle’s arc. It can also display the angle measure as students move the vertex along the 
arc of the circle to show that the measure is maintained.  

 
Figure 4: GeoGebra illustration of the Inscribed Angle Theorem 

These software packages can be used as a tool for students to transform figures and to examine how 
certain properties remain even avoiding the consequences of one-case correctness of an image. 
Dynamic Geometry Software can also link visualization to critical thinking by allowing students to 
see how changing certain portions of the image affects the overall properties of the image.  
Typical Images in High School Geometry Textbooks 
Our basic research question is: What are the ‘typical’ images in High School Geometry textbooks? 
We began by defining what we mean by the term typical image. 
 A typical image of a particular mathematical object is a visual representation of that object that is 
drawn a certain way in the majority of the instances with no content-based reason. 
 For example, if in a section about equilateral triangles we notice that over 50% of the triangles are 
positioned such that one of their sides is aligned with the text, we say that an equilateral triangle 
with this “horizontal” alignment is a typical image of an equilateral triangle. However the fact that 
every triangle in this section is equilateral would not imply that equilateral triangles are typical 
images of triangles because there is a content-based reason for this representation in that particular 
section. 
We decided to look at geometry textbooks because of the wealth of images they provide. To 
determine the typical images, we looked at a relatively small sample of geometry textbooks and 
examined what images were presented in these textbooks.  For example, we found that most of the 
images of polygons were drawn in such a way that at least one side of the polygon was aligned with 
the text, with no content-based reason for this alignment.  This may lead students to assume that 
polygons must always be drawn with this particular alignment and will affect the concept image a 
student has of this mathematical notion.    
In mathematics classrooms across the nation, there are three major publishing houses: Houghton 
Mifflin Harcourt, McGraw-Hill, and Pearson. They provide the majority of secondary mathematics 
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textbooks accounting for approximately 75% of the market (Banilower et al. 2013). Two other 
publishers, University of Chicago School Mathematics Project (UCSMP) and CK-12 Foundation, 
were included in the sample in order to provide books that are not as commonly adopted. UCSMP 
has created a student-centered and research driven curriculum that is currently being used by 4.5 
million students nationwide. CK-12 Foundation is a non-profit organization developing free and 
customizable materials designed to align with the state standards. They develop so called 
FlexBooks, which are interactive online textbooks that can include multimedia activities.  
We display the above information in a tabular format, and gave each textbook a short code as 
shown below in Table 1. 

Textbook and Publisher Short 
Code 

Pearson: Geometry Common Core 
Charles, R. I., Kennedy, D., Hall, B., Bellman, A. E., Bragg, S. C., Handlin W. 
G., . . . Wiggins, G. (2015). Geometry Common core. Upper Saddle River, NJ: 

Pearson Education.  

P1 

Pearson: CME Project Geometry 
Cuoco, A., Baccaglini-Frank, A., Benson, J., Antonellis D’Amato, N., Erman, D., 

Harvey, B., . . .Waterman, K. (2009). CME Project Geometry. Upper Saddle 
River, NJ: Pearson Education.  

P2 

Pearson: Informal Geometry-Classics Edition 
Cox, P. L. (2006). Informal geometry Classics edition. Upper Saddle River, NJ: 

Pearson Prentice Hall. 
P3 

Pearson: Blitzer, Thinking Mathematically 
Blitzer, R. (2015). Thinking mathematically (6th ed.). Boston, MA: Pearson 

Education. 
P4 

McGraw Hill: Glencoe Geometry 
Carter, Cuevas, Day, Malloy, and Cummins (2010). Glencoe McGraw Hill 

Geometry. Columbus, OH: The McGraw Hill Companies.  
M1 

McGraw Hill: Geometry Concepts and Applications 
Cummins, J., Kanold, T., Kenney, M., Malloy, C., and Mojica, Y. (2006). 

Geometry Concepts and application. Columbus, OH: Glencoe/McGraw Hill.  
M2 

Houghton Mifflin Harcourt: Holt McDougal Geometry Common Core Edition 
Burger, E. Chard, D. J., Kennedy, P., Leinwand, S., Roby, T., Seymour, and D., 
Waits, B. (2012). Holt McDougal Geometry. Lewiston, NY: Houghton Mifflin 

Harcourt Holt McDougal. 

H1 

University of Chicago School Mathematics Project (UCSMP): Geometry 
Benson, J., Klien, R., Miller, M. J., Capuzzi-Feurstein, C., Fletcher, M., Marino, 

G., Usiskin, Z. (2009). University of Chicago School Mathematics Project: 
Geometry (3rd ed.). Chicago, Il: Wright Group/McGraw Hill. 

U1 

CK-12 Foundation: Geometry 2nd Edition 
Jordan, L., and Dirga, K. (2015).  CK-12 Geometry - Second edition.  Palo Alto, 

C1 
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CA: CK-12 Foundation. 

CK-12 Foundation: Basic Geometry Concepts 
Greenberg, D., Jordan, L., Gloag, A., Cifarelli, V., Sconyers, J., and Zahner, B. 
(2015). CK-12 Basic geometry concepts.  Palo Alto, CA: CK-12 Foundation.  

C2 

CK-12 Foundation: Geometry Concepts-Honors 
Spong, K. (2016). CK-12 Geometry concepts- Honors.  Palo Alto, CA: CK-12 

Foundation.  
C3 

CK-12 Foundation: Geometry-Basic 
Jordan L., Zahner B., Cifarelli, V., Gloag, A., Greenberg, D., and Sconyers, J. 

(2014). CK-12 Geometry - Basic. Palo Alto, CA: CK-12 Foundation.  
C4 

CK-12 Foundation: Geometry-Concepts 
Dirga, K., and Jordan, L. (2015). CK-12 Geometry concepts. .  Palo Alto, CA: 

CK-12 Foundation. 
C5 

CK-12 Foundation: Foundation and Leadership Public Schools, College Access 
Reader, Geometry 

Fauteux, M., and Zapata, R. (2015). CK-12 Foundation and leadership public 
schools, College access reader: Geometry. Palo Alto, CA: CK-12 Foundation.  

C6 

Table 1: Short codes used for textbooks  

Topics Examined 
 We focused on the visual representations of the following four topics: parallel lines and 
transversals, classification of triangles, parallelograms, and trapezoids.  For each textbook we found 
the sections that most thoroughly covered these four topics, and we looked briefly at each of the 
topics to get an idea of what would be considered typical. The majority of images were consistently 
drawn with at least one line or line segment of the image being horizontal.  For each of the sections 
we defined the typical images (shown in Figure 5) as follows: 
• Parallel lines and transversals- We defined a typical image in this section to be an image in 

which the parallel lines are aligned with the text.  
• Classifying triangles- We defined a typical image of a triangle in this section to be one 

drawn with one side aligned with the text. 
• Parallelograms- We defined a typical image in this section to be a parallelogram that is 

drawn with one pair of parallel sides aligned with the text. 
• Trapezoids- We define a typical image in this section to be a trapezoid that is drawn with a 

pair of parallel sides aligned with the text. 
 



 Cannon and Krajcevski 

 184 

 
Figure 5: Examples of Typical and Atypical images in each section 

Methodology 
For each of the textbooks we examined both the lesson and exercise portions of the four previously 
listed sections. In total, we examined 1444 images in 14 geometry textbooks. We decided to look at 
these two portions of each section separately to see if there was any difference in the number of 
typical images presented. Each image in the textbook section was coded as either typical or atypical 
according to the previously discussed specifications and a tally was kept.  
When an image presented ambiguity in coding because it was not a single figure but a composition 
of more than one figure put together, we examined the questions asked about the represented 
notions on the figure.  We illustrate this with the example on Figure 6. If the question asked is about 
the triangle ABD then we would code triangle ABD as a typical image of a triangle. If the question 
asked is about parallelogram AEFB then this image would not be typical because the parallelogram 
is not aligned horizontally. This was done for each of the questions asked in the composition 
images, in order to avoid inconsistencies.  
 

 
Figure 6: Example of a compilation image needing interpretation for coding 

Typical Images by Topic 
 Table 2 shows the percent of images that are typical by topic for each of the four topics 
examined: parallel lines and transversals, classifying triangles, parallelograms, and trapezoids.   

Topic Number of Images Number of Images that Percent of Images that 
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Analyzed are Typical are Typical 

Parallel Lines and 
Transversals 

270 140 51.9% 

Classifying Triangles 576 333 57.8% 

Parallelograms 316 236 74.7% 

Trapezoids 282 212 75.2% 

Total 1444 921 63.8% 

Table 2: Percent of images analyzed that are typical by section. 

Percent of Typical Images in Lessons versus Exercises 
We examined each section’s lesson and exercise portions separately in order to see if there were 
more typical images in one or the other.  Table 3 shows the results of this inquiry. 

Textbooks Percent of Typical 
Images in Lessons 

Percent of Typical 
Images in Exercises 

P1 89.5% 67.9% 

P2 60.0% 22.9% 

P3 90.9% 69.9% 

P4 83.3% 98.8% 

M1 50.0% 54.4% 

M2 80.0% 61.2% 

H1 67.9% 65.9% 

U1 66.7% 53.6% 

C1 51.4% 57.4% 

C2 67.2% 68.3% 

C3 66.7% 45.5% 

C4 63.2% 62.1% 

C5 62.5% 64.7% 

C6 61.5% 72.7% 
Table 3: Percent of images that are typical in lessons versus exercises by textbook 

 

Typical Images in Physical Textbooks versus FlexBooks 
Of the 14 high school geometry textbooks examined, 8 were physical printed textbooks and 6 were 
FlexBooks, which are open sourced, web-based, customizable, and interactive textbooks. One of 
our suggestions for overcoming limitations in visualization coming from the static nature of images 
is to use interactive figures that the FlexBooks have ability to provide.  However, the CK-12 
FlexBooks contained image content that was similar to that of the physical textbooks. FlexBooks 
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could have easily differentiated themselves from physical textbooks, but they did not fully utilize 
that capability. 
Table 4 compares the percent of typical images found in the physical textbooks versus the CK-12 
FlexBooks. 
 
 Number of Images Analyzed Number of Images that are Typical Percent of Images that are Typical 

Physical Textbooks 859 561 65.3% 

Flexbooks 585 360 61.5% 

Table 4: Percent of typical images in physical textbooks versus FlexBooks 

Conclusion 
Discussion 
Textbooks play an important role in developing the visual literacy of students so it is appropriate to 
give more attention to this area of research. If students are not given the opportunity to learn visual 
strategies for analyzing images then they are less likely to understand mathematical notions that are 
highly visual, or use the power of visualization in the cognitive process.   
The textbook image analysis we have provided used 14 high school geometry textbooks, 8 physical 
printed textbooks from publishers who dominate the textbook market and 6 FlexBooks from a 
relatively new and innovative publisher CK-12 Foundation.  We examined the use of images in four 
major geometry topics: parallel lines and transversals, classifying triangles, parallelograms, and 
trapezoids.  For each of these four topics we looked at the section in each book that was most 
relevant to the concept and counted the number of typical images out of the total images presented 
for the lesson portion and exercise portion separately. We established what percentage of images 
seen by students are typical images.  
Examination of the textbooks revealed that approximately 63.8% of the images used in 
corresponding sections of these textbooks are typical images. This average can be specified further 
to show 65.3% of all images are typical images in the physical textbooks and 61.5% are typical 
images in the relatively new CK-12 FlexBooks. With such a large portion of the images being 
typical, students’ visual literacy is negatively affected. So in a case where a shown figure is 
presented with an unusual alignment or representation, students may not recognize the figure 
(Krajcevski, Sears & Kardes 2017).  
Most of the textbooks examined did not have much difference in the number of typical images 
shown in the lesson versus the number of typical images in the exercises.  However, P1, P2, P3, and 
M2, (Pearson Geometry Common Core, Pearson CME Project Geometry, Pearson Informal 
Geometry-Classics Edition, and McGraw Hill Geometry Concepts and Applications respectively) 
had significant differences (more than 15%) between the percentages of typical images found in 
lessons versus exercises. All four of these textbooks with marked differences had more typical 
images in the lessons portions than in the exercises portions of the section.  This may present major 
challenges to students. If a lesson shows only typical images, a student facing a problem with an 
image presented in atypical representation, student may have difficulty recognizing the image as 
having the same properties as the typical form of the image.  
Of the four sections we analyzed, at least 50% of the images were typical.  The sections on parallel 
lines and transversals and classifying triangles were in the lower end of this having 51.9% and 
57.8% typical images respectively.  Of the parallelograms examined 74.7% were all drawn as 
typical images and 75.2% of trapezoids were typical.   
Limitations 
Our sample for the study used a range of textbooks but the sample is still not fully representative of 
all the textbooks currently in use in the country. While these choices provide a wide range of 
textbook types, the sample of books could be expanded. Our study also examined four sections of 
these textbooks, parallel lines and transversals, classifying triangles, parallelograms, and trapezoids.  
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The typical images in these sections may not represent the percentage of typical images in other 
topic areas. We included only geometry textbooks because they provide the largest number of 
images for analysis, but the results could be different if we looked instead at Algebra or Calculus 
textbooks. 
The examination of the CK-12 FlexBooks occurred until March 1st 2016.  The FlexBooks 
open-sourced web-based format allow for quick changes and revisions to the content.  It is 
conceivable that these books may have changed from the time they were originally analyzed. 
Implications and Conclusions 
This study shows that visual material presented to students needs more variety.  This lack in 
diversity of images could lead to the creation of misconceptions if students are presented with 
images that are not aligned in the typical fashion or have an unusual orientation (Nardi 2014). 
Teachers should be active in incorporating more varied imagery into their classroom lessons and 
show connections between different ways of representing mathematical notions. Our study also 
indicates that more varied imagery should be included in the geometry textbooks. It is our belief 
that there is potential for FlexBooks to be used successfully in the classroom.  While they do not yet 
differ much from physical textbooks, FlexBooks have the ability to adapt and change rapidly at the 
demands of the learners.  In addition, teachers can customize them to the needs of their classroom 
and students.  More interactive material could be added to the FlexBooks to provide diverse 
opportunities for visualization to enrich the mathematical learning process.  
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WHEN IS AN EXPLORATION EXPLORATORY?  
A COMPARATIVE ANALYSIS OF GEOMETRY LESSONS 

LESLIE DIETIKER  and ANDREW RICHMAN 
Abstract 
This paper presents a comparative analysis of two textbook lessons on the same topic from U.S. 
textbooks to learn how differently-designed “exploratory” lessons may structure content to enable 
or constrain student inquiry. One lesson, representative of a “reform-based” textbook, contains 
investigations of conditions of triangle congruence. The second is a “technology lab” on triangle 
congruence from a “traditional” textbook, the design of which is atypical for the that textbook. 
Framing a lesson as a mathematical story, this analysis exposes three distinct ways that these 
lessons are different: (a) the proportion of the lesson in which mathematical questions remain 
unanswered, (b) the manner in which content unfolds to address each question, and (c) the way in 
which open mathematical questions overlap to increase the dynamically-changing number of 
questions that are pursued. This contrast of the two lessons illuminates how a lesson structure can 
prevent an “exploration” from being exploratory. 
Introduction 
In the United States, calls for written curriculum that is designed to support inquiry and problem 
solving have been increasing in recent decades (e.g., NCTM 2000, NCTM 2014, CCSS 2012). 
Curriculum designers and publishers have responded to this call by including “explorations” in their 
lessons, which we define as activities without proscribed procedures that are focused on answering 
at least one large mathematical question as the focus. However, given inevitable variations in the 
designs of explorations, we are concerned that some lessons that appear exploratory may not fully 
support student inquiry. As the call for shifting the mathematical experiences of students toward 
inquiry and problem solving becomes increasingly international, understanding how the designs of 
written curricula enable or constrain these experiences is needed. 
To begin to address this concern, this study compares two mathematical lessons on the same topic 
from U.S. textbooks to explain how the sequence of tasks in an activity may impact the experience 
of a learner. One lesson, representative of a “reform-based” textbook (“A”), contains investigations 
of conditions of triangle congruence. The second is a “technology lab” on triangle congruence from 
a “traditional” textbook (“B”), the design of which is atypical for the that textbook. Comparing 
these lessons offers the opportunity to distinguish between differently-designed “explorations” and 
allows us to recognize how the structure of content may enable or constrain student exploration. 
Theoretical Framework 
In order to compare the unfolding mathematical structure of these lessons, we interpret the 
mathematical content of written curriculum as a form of narrative. Specifically, we interpret how 
mathematical content unfolds sequentially for a reader as a mathematical story (Dietiker 2013, 2014 
& 2015). This conceptualization focuses on the mathematical content, interpreting mathematical 
objects such as numbers or triangles as characters of the mathematical story. This framing also 
considers the manipulation of mathematical objects as mathematical action. The setting of a 



 Dietiker and Richman 

 190 

mathematical story can be thought of as its representational space, such as a number line on paper 
(for adding integers) or on a plane represented with dynamic geometry software.  
Drawing from the literary theory of Barthes (1974), we propose that a reader asks questions of a 
story (based on what limited information has been introduced so far) and continues reading in the 
hopes that these questions will be answered. As mathematical questions are raised and tackled, the 
changing moment-to-moment tension felt by a reader between what is known and what is desired to 
be known can be interpreted as the mathematical plot. Thus, a mathematical plot attends to two 
characteristics of the mathematical story: the sequence in which events occur within the story (i.e., 
the way the story controls what the reader learns and when they learn it) and what is known and not 
known by the reader throughout the story as the sequence unfolds (i.e., realizations made in the 
moment). In terms of a written mathematics lesson found in a textbook, the mathematical plot 
represents the coordination of the acts of the mathematical story (the sequential parts of the lesson) 
and a reader’s questions that are raised and addressed throughout the story (what is known and not 
known by the reader). 
Methods 
In order to begin to address the research question, “How do mathematics written materials 
potentially enable or constrain explorations?” we compared two textbook lessons with explorations, 
both of which are the first lesson in their respective textbooks to introduce the side-side-angle 
triangle congruence ambiguity principle (sometimes referred to as “SSA”). We chose lessons 
focusing on SSA anticipating that differing treatments of the ambiguity might provide interesting 
variations in the lessons. One lesson was selected from Textbook A, a book that regularly features 
investigations. This textbook also is designed to focus on inductive reasoning whereby students are 
expected to conjecture based on the results of an experiment that involved geometric construction. 
The lesson in this textbook that was analyzed in this study (“Lesson A”) is the first of two that 
explore triangle congruence shortcuts. This lesson first introduces the idea of a congruence shortcut 
by describing a potential use of congruence shortcuts in building trusses for houses. It then lists the 
six potential triangle congruence shortcuts and structures paper and pencil explorations that test 
three of them – Side-Side-Side (SSS), Side-Angle-Side (SAS), and SSA. 
The other textbook lesson was selected from Textbook B, which is generally designed so that most 
lessons provide definitions, examples, and theorems directly before presenting tasks or questions 
for students. However, the lesson analyzed in this textbook (“Lesson B”) deviated from the majority 
of lessons in Textbook B by consisting solely of two explorations. These explorations, which 
require the use of dynamic geometry software, ask students to manipulate specific dimensions of 
triangles while holding others constant. After the figures are manipulated, the text asks students to 
observe that Angle-Angle-Side (AAS) and SAS combinations are congruence shortcuts while SSA 
is not. 
For each textbook lesson, only the recommended instructional components of the lessons were 
analyzed as part of the mathematical story of the lesson, as opposed to optional parts or homework 
problems. The mathematical plot of each lesson was analyzed by identifying three aspects of each 
mathematical story which are described below: the acts, mathematical questions raised by the story, 
and all forms of progress on each question. The mathematical plots were then compared to learn 
how the lessons were similar or different. 
Acts. First, each mathematical lesson was interpreted as a mathematical story that connects start to 
finish. In order to determine the sequence of the textual parts, the lessons were assumed to flow 
from top to bottom of each page. For callouts, such as teacher notes on the side of the page, the text 
was linked to corresponding portions of the student text in order to determine its placement within 
the sequence of the mathematical story. 
With the sequence determined, each mathematical story was then subdivided into multiple, 
sequential acts. A new act was identified each time new story elements (i.e. mathematical 
characters, actions, settings, or relationships) were introduced or became the focus of the lesson.  
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Mathematical Questions. Once the acts of the mathematical story were defined, the mathematical 
questions that emerge throughout the story were identified. Both explicit questions raised by the 
text and implicit questions suggested by goal statements or other content were coded. For example, 
the goal statement “In this lesson you will learn about congruence shortcuts for triangles” can raise 
the implicit question, “What is a congruence shortcut?” These questions were identified by 
individual coders, who then met to resolve differences. 
Coding Forms of Progress on Mathematical Questions. Then, for each question, the research 
team tracked throughout the lesson any change in what is known about that question, whether it is 
some part of its answer (which we referred to as partial answer) or some form of misdirection that 
subverts progress (e.g., when a textbook implicitly sets up an incorrect assumption, which we refer 
to as equivocation). Table 1 lists the mathematical plot codes, adapted from Barthes (1974), that 
describe how progress can be made (e.g. partial answer) or thwarted (e.g., equivocation) toward the 
answer to each question. Collectively, the transition from the formulation of each question to its 
answer forms a story arc. Story arcs can last for just one act if the question is immediately 
answered, or they can extend for the entire lesson. By juxtaposing the acts as columns with the 
mathematical questions as rows, the mathematical plots are represented as diagrams in Figures 1 
and 2. The shading in each row illustrates in which acts the question is open and thus represents a 
story arc for a mathematical question.  

 Code Description 
0 Proposal A hint or undefined mystery that sets up anticipation. 
1 Formulate Question A question that is raised explicitly or implicitly in the text. 
2 Promise An explicit indication that a question will be answered later. 
3 Partial Answer Progress is made toward an answer without endorsement. 
4 Equivocation Misdirection through ambiguity that leads to an incorrect 

assumption.  
5 Delayed Disclosure A question is formulated and answered by the reader in the same act 

but is disclosed more than one act later.  
6 Disclosure An explicit revelation of the answer in the text (or a teacher is 

directed to disclose the answer). 
Table 1. Mathematical Plot Codes adapted from Barthes (1974) 
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Figure 1. Mathematical plot of Lesson A, where each digit in the story arcs refers to a mathematical plot 
code in Table 1. 

 
Figure 2. Mathematical plot of Lesson B, where each digit in the story arcs refers to a mathematical plot 

code in Table 1. 
Findings 
By analysing the mathematical plots of these selected lessons as represented in Figures 1 and 2, we 
have identified three mathematical plot characteristics that describe structural ways in which these 
explorations differ that can potentially impact the experiences of a learner.  
Story arc length. In general, Lesson A has longer story arcs, keeping mathematical questions open 
for longer and thus allowing and fostering sustained curiosity. On average, story arcs in Lesson A 
remain open for 4.5 acts whereas the story arcs in Lesson B remain open for 2.4 acts. A majority 
(63%) of its story arcs are open for more than one act. In fact, Lesson A is particularly interesting as 
it raises mathematical questions that are not addressed until the next lesson, which creates the 
opportunity for students to wonder about these congruence shortcuts independently after the end of 
this lesson. 
In contrast, despite having two explorations, Lesson B is designed for questions to be answered 
relatively quickly. In its mathematical plot, a majority of its story arcs (60%) are only one act long. 
Even some story arcs that are longer than one act are shortened by delayed disclosures, which occur 
when the textbook shifts the focus after students address a question, but then discloses the answer 
one or more acts later.  
The unfolding of content within story arcs. Within the story arcs of both lessons, the nature of the 
unfolding content further demonstrates how these lessons enable or constrain exploration. For 
example, the story arcs in Lesson B are much more active than those in Lesson A. On average, 76% 
of each Lesson B story arc, vs. 47% of each Lesson A story arc, contains at least one code 
describing some changing aspect of the content. This difference is reflected in Figures 1 and 2 as 
there are more shaded cells that are empty (i.e., without codes) in Lesson A than Lesson B. Thus, 
Lesson A provides more opportunities for readers to wonder about questions even when they are 
not being actively addressed. This structure helps build in students a habit of inquiry whereby they 
are looking for answers rather than expecting to be guided to them.   
One prominent way that Lesson A keeps some questions open for long portions of the mathematical 
story without changing what is known is through promises. For many of the key mathematical 
questions of Lesson A, such as Questions #12 – 16, the mathematical story promises answers (code 
“2”) that will not become realized for a reader for as many as seven acts. These promises assure 
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students that the questions will be answered, thus encouraging students to wonder about them even 
when the questions are not the explicit focus of the current activity.  
Although both lessons have two equivocations, that is, instances in the lessons when students are 
encouraged to make an incorrect assumption, the equivocations in Lesson A potentially support 
sustained curiosity while those in Lesson B do not. The equivocations in Lesson A occur in Act 6 
when the book displays the six potential triangle congruence shortcuts. All six are displayed by 
marking the congruent parts on triangles that appear congruent. This suggests that all six potential 
shortcuts guarantee the congruence of triangles. This is coded this as an equivocation for questions 
15 and 16 (Is SSA a shortcut? And Is AAA a shortcut? respectively) since these pairs of known 
information do not guarantee congruence. This equivocation supports student inquiry because it 
contradicts an accompanying statement in the text that indicates that some of the combinations of 
information (AAA, AAS, ASA, SSA, SAS, and SSS) will guarantee congruence and others will not. 
Thus, students are directly challenged to resolve this contradiction and carry these questions into the 
next act. 
In Lesson B, no such contradiction is created by the equivocations. The first equivocation occurs in 
Act 10 when students construct an SSA triangle where the included angle has two possible 
measures. This enables students to answer “no” when asked whether constructing a triangle given 
Side-Side-Angle can result in only one triangle. This is an equivocation because there are, in fact, 
conditions under which SSA does form only one triangle. However, unlike in Textbook A,  
 
 
 
 
 
 

Figure 3. A case where two side lengths a and b and non-included obtuse angle A are given and only one 
triangle is able to be constructed. 

Textbook B offers no indication that there is any other possibility, so the equivocation does not 
support student curiosity. A second equivocation in Lesson B, in Act 11, occurs when students learn 
that SSA right triangles form only one triangle and use this fact to answer a problem that asks 
students to identify what type of non-included angles result in only one triangle. Since the expected 
answer to this problem is a right angle and since the tasks never propose the investigation of other 
types of angles, the lesson enables a student to assume that right triangles are the only case of SSA 
that only form one triangle. This precludes a student from recognizing that when the given 
non-included angle is obtuse and only one triangle is possible (see Figure 3). Again, since there is 
no indication that another answer is possible, the equivocation does not spur student curiosity. 
 
Density of open mathematical questions.  An analysis of the density of each lesson, which is a 
measure of the number of open story arcs in each act, also reveals how these mathematical stories 
are different. The average density in Lesson A, that is, the average number of open questions per 
act, is 8.3 as compared to 3.7 for Lesson A. In other words, on average, each act in Lesson A has 
twice as many open questions as Lesson B. This means that Lesson A has a “thicker plot,” making 
it more likely to offer a general sense of a multifaceted lesson. A reader is offered much to consider 
at any given moment and the potential for reader anticipation is likely to be higher.   
The overlapping story arcs in Lesson A also tend to cluster more than in Lesson B. In the plot 
diagram of Lesson A, large blocks of adjacent multi-act story arcs are evident, while in Lesson B, 
the overlapping story arcs are more scattered. This suggests that the story arcs in Lesson A are more 

A 

a 

b 
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related to each other, and build on each other progressively, providing an enhanced feeling of 
coherence to the lesson.    
The changing levels of density as the lessons progress suggest that Lesson A might provide a more 
engaging structure of inquiry than Lesson B. As can be seen in Figure 4, the number of open 
mathematical questions in Lesson A increases for nearly the first half of the lesson. It reaches a 
peak of 15 open questions in Act 6, after which it then begins to resolve more questions than it 
opens. This decrease in density continues for approximately a quarter of the lesson, after which it 
levels off to have about 9 open questions through the end of the lesson. In comparison, Lesson B 
instead maintains a relatively constant amount of open questions (either 3 or 4) for a majority of the 
lesson. It does increase to 6 open questions midway through the lesson (in Acts 7 through 9) before 
returning to a level state in Acts 10 through 14. Finally, the density of Lesson B drops to 1 question 
as it ends. 

 
Figure 4. The density of inquiry of Lessons A and B. 

The difference in the shape of density between these two lessons highlights a potential felt 
difference in the way in which the lesson could be experienced by a student. When mounting 
questions increase in a literary story, a deepening sense of mystery can result in a feeling of 
suspense. In a similar way, when a mathematical story enables a reader to recognize an increasing 
number of questions that are unanswered and under consideration over a prolonged period of time, 
there is a similar potential for heightened anticipation for the questions to become answered. For 
this reason, we conclude that the design of Lesson A, with its numerous overlapping story arcs, 
enables a reader to develop a sense of growing mystery throughout the first part of the lesson. These 
layers of related, unanswered questions that remain open for long periods of time can allow students 
to anticipate a “climax” during which the plot “turns” to resolve tension. In contrast, Lesson B feels 
“flat,” and therefore may be experienced as predictable and uninteresting.  
Discussion 
Our study illuminates how a lesson structure can prevent an “exploration” from being exploratory. 
The mathematical plot of Lesson B is designed in a way that does not facilitate sustained curiosity.  
Readers are prevented from developing an interest in where the lesson is headed due to short story 
arcs that are only open when a question is being addressed and a lack of promises and 
contradictions. A consistently thin plot means that Lesson B provides little to wonder about at any 
given time and does not build to any dramatic moment. In contrast, the mathematical plot of Lesson 
A is sequenced to slowly reveal and withhold information in a way that cues the learner of what 
lays ahead, which can potentially increase student curiosity and sustain the student’s interest in 
completing the story. Lesson A raises and keeps open multiple questions through significant 
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portions of the story. It also uses ambiguity, promises and a progressively thickening plot to 
potentially increase anticipation and curiosity for what is to come.  
We propose that the design of Lesson B may be constrained by the broader mathematical story 
within which it is placed (i.e., the sequenced lessons that come before and after), which likely 
creates an expectation from readers that mathematical questions will be asked and answered quickly 
and in a straightforward manner. The regularity with which explorations are used in Textbook A, 
however, may prepare readers to persevere though story arcs that not only last longer but stay open 
in the background and even take an indirect path to disclosure. Further study is needed to learn 
whether, in general, the broader design principles of textbooks impact the extent to which 
explorations support inquiry in the way that Lesson A does in this study.  
Thus, we argue that the mathematical story framework offers new understanding of how designed 
textbook content incrementally emerges and changes as a lesson unfolds. This understanding is 
important as it can distinguish between textbooks that add only superficial features that appear to be 
consistent with reform from textbooks that are structured throughout to provide students with the 
experiences that reforms are designed to promote. This distinction is not only important for 
researchers as they examine curricular materials and decision makers as they choose materials, but 
can also help curriculum writers and teachers make the design and pedagogical decisions that shape 
the daily instruction of students in the classroom.   
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HOW BOOKS FROM THE 6TH TO THE 9TH GRADE PROPOSE 
HORIZONTAL TREATMENT OF COMBINATORICS 

ANA PAULA LIMA and RUTE BORBA 

Abstract 
In the present study, part of a doctoral research in progress1, it is proposed an investigation on how 
combinatorics is treated in textbooks used by mathematics teachers of the Colégio de Aplicação 
(CAp), a middle and high school maintained by the Universidade Federal de Pernambuco – UFPE. 
In this sense, the aim of the present study is to analyse how Horizon Content Knowledge, one of the 
six dimensions of teacher knowledge proposed by Ball, Thames and Phelps (2008), is encouraged 
in textbooks, so that it may help teachers in a gradual teaching of combinatorics along basic 
education. Thus, it is expected that textbooks, being instruments widely used by teachers for the 
teaching of mathematics, should propose a gradual deepening of concepts, in particular those 
present in combinatorial situations, from one school grade to another and from one level of 
schooling to another. 
Keywords: Textbooks; Combinatorics; Teacher’s Knowledge. 
Introduction 
In Brazil one of the public policies focused on education, is the free distribution of textbooks for 
students of basic education. These books are evaluated and distributed by the Brazilian National 
Textbook Programme (PNLD), established by the decree nº 91.542, of 19/8/85, that periodically 
analyses textbooks for the different segments of Brazilian basic education. For middle school, the 
evaluations of new books occurred in the years 1999, 2002, 2005, 2008, 2011, 2014 and 2017. 
For Gérard e Roegiers (1998), a textbook can have different functions that vary according to its user 
(government, students or teachers). For teachers, Gérard e Roegiers (1998, p. 89) believe that “the 
textbooks contribute to the development of pedagogical innovations. [...] the evolution of 
pedagogical knowledge, the sensitivity of each teacher and the specificity of the contexts”. Another 
function attributed to the textbook is to take to the classroom the didactic and pedagogical changes 
that are indicated by official curricular documents and by the research developed in the universities 
(Brasil 2016). Oliveira & Bittar (2015, p. 133) also affirm that “the textbook exerts a strong 
influence on the didactic and pedagogical activity of the teacher and the acquisition of knowledge 
by the student”. 
The study of combinatorics is usually treated less formally in the early years of primary school as 
guided by the Parâmetros Curriculares Nacionais - PCN (Brasil 1997; 2017), and in high school this 
content comes to full formalization, being expected in middle school (6th to 9th grade) an 
intermediate stage of formalization. For middle school, the PCN (Brasil 1998) recommend that the 
study of combinatorial situations should not be done based on the definition of the different types of 
problems (cartesian product, permutation, arrangements and combination) And neither with the use 

                                                                            
1 The general aim of the research is to investigate collaborative activities among mathematics teachers of the 
CAp - UFPE and how, from these activities, the teachers mobilize different forms of knowledge for the 
teaching of combinatorics. 



 Horizontal Treatment of Combinatorics 

 197 

of formulas, thus enabling the development of combinatorial reasoning and the perception that the 
fundamental principle of counting is applicable to the different problems studied. These guidelines 
are also reinforced by the National Curricular Common Base – BNCC (Brasil 2017) and pointed 
out in the studies of Pessoa & Borba (2009) and Borba (2010; 2013; 2016). A possible horizontal 
presentation can help the teacher in the development of a gradual teaching of combinatorics along 
basic education. 
Content Horizon Knowledge is the teacher's knowledge and ability to perceive the relationships 
between mathematical fields and how connections are present throughout the curriculum. For Ball, 
Thames & Phelps (2008) the teacher also needs to have a prediction about future mathematical 
content to be able to conduct a deepening that is being worked on in the classroom. 
In combinatorics, for example, it is the knowledge that the teacher has about the teaching of this 
content of mathematics throughout all basic education, how this should be approached in the 
different stages of schooling, which recommendations regarding the contents are placed in the 
official documents and how it is presented in the collections of textbooks adopted by schools in 
which they work. According to Phelps, Weren, Croft & Gitomer (2014), this type of knowledge 
also includes the different ideas that are connected in a mathematical field, starting from the most 
basic to the most complex or advanced ideas. 
Thus, it is expected that textbooks, being instruments widely used by teachers for the teaching of 
mathematics, should propose a gradual deepening of concepts, in particular those present in 
combinatorial situations, from one school grade to another and from one level of schooling to 
another. 
Method 
The main aim of the paper is to analyse how Horizon Content Knowledge is encouraged in 
textbooks, so that it may help teachers in a gradual teaching of combinatorics along basic education. 
Another aspect observed will be about how this horizontal treatment can stimulate collaborative 
actions among teachers (from middle school and high school). 
Analysis concerning the collection used at middle school, from the Colégio de Aplicação – CAp of 
Universidade Federal de Pernambuco - UFPE, in the chapters and topics about data processing, are 
presented. The collection was evaluated and approved by the PNLD/2014 and adopted by CAp for 
the triennium 2015/2016/2017. 
Results and Discussion 
The analyzed collection presents in the Teacher’s guide one table (Table 1) indicating the work with 
combinatorics in each one of the years of the second stage of middle school. 
	

Content 6th grade 7th grade 8th grade 9th grade 

Count of 
possibilities and 

probability 

Double input 
table 

Trees of possibilities; 
multiplicative 

reasoning; notion of 
probability 

Chance 
calculation  

Table 1- Proposal of work with Combinatorics in the teacher’s guide of the collection analysed. 
In the Teacher’s guide of the 6th to 9th grade textbooks of the analysed collection, the authors point 
out that the contents presented in Table 1, with the proposal of development of activities, are only 
the central topics that will be worked on each year. The cells of the table are organized to show only 
the advances in the study of each of the topics. Thus, the absence of content in the table does not 
mean that the theme will not be worked on, but rather, that no different idea has been added to the 
respective year. 
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In this collection, were identified some activities involving combinatorial situations, distributed 
throughout the different years, as indicated in Table 2. 
	

Grade 6th grade 7th grade 8th grade 9th grade Total 

Number of 
problems identified 13 20 4 19 56 

Table 2- Activities of Combinatorics present in the collection. 
From the proposal presented in Table 1 and the quantitative of combinatorial situations presented in 
Table 2, it can be affirmed that combinatorics is present in all volumes of the collection, thus 
ensuring, that the teacher should work in final middle school, with combinatorial situations. It is 
this constant presence along the collection that can indicate a horizontal work with combinatorics. 
To confirm this hypothesis (of the intention of the authors of the collection to point out a constant 
work with combinatorics), the guidance given to teachers and the approach to the situations 
identified will be analysed. 
The following examples are presented in order to identify the horizontal treatment of the 6th to 9th 
grade combinatorial situations and if the guidelines given to the teacher can, in any way, encourage 
collaborative work among mathematics teachers who work in the classes of middle school. 
For the 6th grade, the authors claim to start the work on counting possibilities from the study of 
simple situations in which the double entry table, (Figure 1) is an initial resource to calculate all the 
required possibilities. In that same year, it is already advanced to the teacher that in the 7th grade  
 

 
Figure 1: Example of a combinatorial situation in which a double entry table is used as a resolution strategy 

(Source: 6th grade, p. 28). 
the students will come in contact with possibilities trees and the multiplicative reasoning to solve 
counting situations. According to the collection, the possibilities tree will provide students with "the 
perception that multiplication relates to certain counting problems” (6th grade, Teacher’s guide, p. 
37) and thus students can solve situations a little more complex involving a greater number of 
possibilities. 
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This type of orientation presents indications of a horizontal work of combinatorics. It starts the 
study from simple situations and with the table as resource to solve these problems, but already 
anticipates to the teacher that the students the following year (7th grade) will come across another 
type of resource, which is the possibilities tree. It is suggested, therefore, that the situation will be 
more complex than those presented in the book of the 6th grade and thus it is recommended to use a 
representation that enables more systematization. 
In this way, indirectly, there is encouragement for collaborative work among teachers, since a 
teacher should take into consideration the work done previously by another teacher and seek, from 
there, to expand the concepts to be studied by students. 
The textbook of the 7th grade, according to Table 2, has more combinatorial situations (20 in total) 
and points out that the count of possibilities, tables, possibilities three and multiplicative reasoning 
will be used as resources to solve the different situations presented. According to what is presented, 
the idea is that students perceive patterns in simple situations and that can generalize to more 
complex cases. This proposal can stimulate, in teachers, the development of the Horizon Content 
Knowledge, which is when teachers must understand how from the double entry table, e.g., can 
stimulate their students at other times to build trees, perceive patterns and use multiplicative 
procedure. 
The suggestion for the teacher to discuss with students different resolutions, can be seen in the 
orientation given to the problem of Figure 2, “Some students will solve the problem without using a 
table or possibilities tree. Always try to discuss with the class the different solutions to a problem” 
(7th grade, Teacher’s guide, p. 73). The idea is for the teacher to stimulate his students in the 
perception of patterns from simple cases to the generalization of more complex cases, It is believed, 
therefore, that this type of orientation can take the teacher to develop Horizon Content Knowledge. 

 
Figure 2- Example of a problem to discuss different solution strategies (Source: 7th grade). 

For the 8th grade, few combinatorial situations are proposed, in which the orientation given to the 
teacher in the guide is that they are basic examples so that the student can perceive differences 
between situations that involve the calculation of probability to those that involve the calculation of 
possibilities. In the students’ textbook, some examples are explored using the possibility tree and 
the double entry table, for the student to visualize all the possibilities. But there are no guidelines on 
how the teacher should address these issues. It is clear, then, that combinatorial situations, are used 
as tools for understanding probability (Figure 3), but one does not directly perceive orientations 
about this articulation along the student's textbook or the teacher's guide. 
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Figure 3- Example of problem situation to stimulate the visualization of all possibilities requested. (Source: 

8th grade, p. 181). 
In the 9th grade textbook, 19 problems involving combinatorial situations were identified. The 
proposal of this textbook, presented in the teacher's guide – TG, is an articulated work between the 
contents of statistics, probability and combinatorics, because, according to the authors of the 
collection analyzed, “the themes are interrelated: to determine the probability of certain events, it is 
necessary to solve counting problems; to ensure the validity of a statistical inference, we need to 
know the probability of the sample be trusted” (9th grade, TG, p. 49). Although affirming that this 
interrelation can be considered complex for a 9th grade class, the orientation for the teacher is that 
basic ideas be constructed between these contents. These orientations favor the development in the 
teacher of Horizon Content Knowledge when searching for this interrelation between these different 
fields of mathematics. In addition, there is also guidance on, starting from a simple approach, the 
teacher can help the student in developing more complex ideas that will be worked on during high 
school. 

 
Figure 4 - Example of a sequence of activities to discuss different resolution strategies. (Source: 9th grade, p. 

99). 
The topic about combinatorics, according to teacher's guide (9th grade, TG p. 49) “can be 
considered as a collection of challenging problems” (Figure 4) and these problems can help in the 
development of combinatorial reasoning, in the perception of standards and regularities and in the 
generalization of resolution procedures. 
Guidance for the teacher when planning this lesson, is that the basic ideas of counting are discussed 
with the students so that there is a recapture of what was seen about combinatorics in previous 
years. It is believed that guidelines such as these may favor the development of Horizon Content 
Knowledge of Mathematics’ teachers who make use of this material. 
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Some Considerations 
At the end of the collection analysis, it is noticed that along the activities there are orientations 
made for the teacher on how to work with the different situations during each stage of middle 
school. The guidelines suggest that strategies be used gradually to solve the proposed situations, 
starting with double entry tables in the 6th grade and in the following years the use of the 
possibilities tree is incorporated so that, in this way, the student can perceive patterns in the 
resolution of the different complex combinatorial situations.  
Throughout the activities there are guidelines made for the teacher on how to work with the 
different situations during each stage of the middle school. The guidelines suggest that strategies be 
used gradually to resolve the proposed situations, beginning with drawings and listings and 
multiplicative reasoning in the 6th grade and in the following years are incorporated the use of the 
possibilities tree so that students can see patterns in the resolution of various complex combinatorial 
situations. 
This type of orientation and the presentation of combinatorial situations may favor the development 
of a collaborative work (although not explained in the guidelines presented in the teacher's guide) 
among the teachers of mathematics who teach in middle and high school. 
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ONE-STEP MULTIPLICATION AND DIVISION WORD 
PROBLEMS IN THE 3RD GRADE TEXTBOOKS IN BOSNIA AND 

HERZEGOVINA 
KARMELITA PJANIĆ 
Abstract.  
According to the curriculum for the 3rd grade in Bosnia and Herzegovina, concepts of multiplication 
and division are taught by modeling real  world  situations expressed in words and (or) a picture. 
The main goal of this paper is to analyze the types of one-step multiplication and division word 
problems represented in mathematics textbooks for the third grade of primary school in Bosnia and 
Herzegovina. We examine distribution of one-step multiplication and division word problems that 
includes 5 multiplication structures (equal groups, rate, multiplicative comparison, rectangular 
array and Cartesian product) in four 3rd grade textbooks approved by relevant ministries of 
education. 
The research results show that all types of one-step multiplication and division word problems are 
not adequately represented nor distributed in the third grade mathematics textbooks. Results of the 
qualitative analysis point to inconsistencies in division problems formulations and, in some cases, 
non-compliance of word problem formulation with the accompanying illustrations. 
Since the textbook is the basic source of information to students as well as the basic, and sometimes 
the only source of ideas to teachers in lesson preparation, it is necessary to revise word problems 
given in textbooks and ensure that all types of multiplication and division word problems are 
presented in textbooks, which would contribute to a better understanding of multiplication and 
division concepts among the third grade pupils. 
Keywords:  one-step word problems, multiplication, division, textbook, Bosnia and Herzegovina  
 

Introduction 
Pepin and Haggarty (2001) emphasize that the textbook makes the connection between school and 
relevant knowledge. Stray (1994) defines a textbook as a book designed to give an authoritative 
pedagogical version of a particular area of knowledge and notes that textbooks are message carriers 
that are multiple encoded. Namely, the textbooks encode the meanings of some part of the 
knowledge i.e. provide what is supposed to be learned, and combine it with pedagogical meanings 
providing the way to learn content. Poljak (1980) defines a textbook as a basic school book written 
on the basis of a prescribed curriculum, a book that students use on a daily basis in their education, 
and which has been designed to make teaching and learning more rational, more optimal, more 
economical and more efficient. 
The mathematical textbook can be described as a pedagogically formatted and officially authored 
mathematical book written to offer mathematical contents to students (Pjanić 2016). Mathematical 
textbooks play an important role in learning and teaching mathematics, especially in the process of 
teaching mathematics, as they are the primary teaching tool for both math teachers as well as 
students. Teachers use the textbook to prepare the class, and the students use it at the same time for 
independent work at home. The widespread use of mathematical textbooks in the process of 
teaching mathematics around the world draws the necessity of analyzing content and structure of 
the textbook. Pepin and Haggarty (2001) conclude that textbooks should be analyzed not only 
within the framework of content and structure but also in the teaching process.  
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Numerous studies have focused on the way teachers use math textbooks in the teaching process. 
Researchers analyzed the way teachers teach mathematical content depending on the contents of 
textbooks (Freeman and Porter, 1989), the use and influence of textbooks in mathematics teaching, 
or they are focused on analyzing and comparing textbook contents (Fan and Kaeley, 2000, Fan and 
Zhu, 2007; Freeman and Porter, 1989; Boonlerts and Inprasitha, 2013).  
As a math word problem we consider the problem situation described in the words, whose solution 
can be obtained by applying mathematical operations to the numerical data available in the problem 
statement. Typically, these problems are expressed in the form of a short text describing the 
relationship between the quantities. The student is required to translate the words to the numerical 
or algebraic expression. After the necessary computation, the numerical value obtained has to be 
interpreted in the sense of the problem context. Often, in a math class, a word problem is followed 
by an image. Since there is no simple or unique way of solving, it is important for a student to think 
and analyze the problem described in the words before trying to solve it. 
Multiplication and division word problems 

Multiplication situations can be classified according to the nature of the quantities involved 
and the relation between them (Nesher 1988; Vergnaud 1988, Schmidt & Weiser 1995). 
Greer (1992) suggested four categories that primarily apply to problems involving the 
multiplication of whole numbers: equal groups, multiplicative comparison, rectangular 
arrays and Cartesian product. Greer (1992) also highlights the range of different external 
representations for these situations. Equal groups and Cartesian product situations can be 
represented by diagrams of equal groups of objects and arrays respectively. Usiskin and 
Bell (1983) proposed thayt multiplication has three use classes: size change, acting across 
and rate factor, each of which is very rich in the breath of its applicability. These 
multiplication use classes are related to division use classes: size change divisor, 
recovering factor and rate divisor, respectively. Division has to other use classes: rate and 
ratio (Usiskin & Bell 1983).   

According to previous findings, five multiplicative structures can be identified: equal groups, 
allocation/rate, multiplicative comparison, rectangular arrayy/area of rectangle and Cartesian 
product. Word problems indicating equal groups, rate and multiplicative comparison are 
asymmetric problems, while word problems indicating rectangular array/area of rectangle and 
Cartesian product are symmetric problems (Chapin & Johnson 2006). 
Taking into account semantic structure of word problem we can differentiate 18 types of 
multiplication and division word problems that are presented in the Table 1. 
 
Multiplicative 

structure 
Multiplication 
word problems 

Division word problems 

Equal groups multiplication 
EGM 

partition 
EGP 

quotition 
EGQ 

A · B =  __ A · __ =  C __ · B =  C 
There are A boxes 
with B toys. How 

many toys are there 
in all? 

C toys are shared 
equally in A 

boxes. How many 
toys will be in 

each box? 

C toys are to be 
packed in boxes, B 
toys in each box. 

How many boxes are 
needed? 

allocation/rate multiplication 
ARM 

partition 
ARP 

quotition 
ARQ 

A · B =  __ A · __ =  C __ · B =  C 
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One sticker costs B 
cents, how much 
would A stickers 

cost? 

I spent C cents to 
buy A stickers. 

What is the cost of 
one sticker? 

I have C cents to 
spend on stickers. If 
one sticker cost B 
cents how many 

stickers can I buy? 
Comparison multiplication 

A · B =  __ 
partition 

A · __ =  C 
quotition 

__ · B =  C 
CMM CMP CMQ 

Sara is B years old. 
Her mother is A 

times older. How old 
is Sara‘s mother? 

Sara‘s mother is C 
years old. She is 

A times older than 
Sara. How old is 

Sara? 

Sara is B years old. 
Her mother is C 

years old. How many 
times is Sara‘s 

mother older than 
Sara? 

CLM CLP CLQ 
Sara is  B years old. 

She is A times 
younger than her 

mother. How old is 
Sara‘s mother? 

Sara‘s mother is C 
years old. Sara is 
A times younger 
than her mother. 
How old is Sara? 

Sara is B years old. 
Her mother is C 

years old. How many 
times is Sara younger 

than her mother? 
Rectangular 

array/ 
Area of 

rectangle 

Multiplication 
RAM 

Division 
RAD 

A · B =  __ A · __ =  C 

The trees are planted 
in A rows and B 

columns. How many 
trees are there? 

If C trees are planted into an array with A 
rows, how many columns of trees are 

there? 

Dimensions of                       
rectangular carpet are 
2m and 3m. What is 

the area of the 
carpet? 

Area of the carpet is 6 m. Carpet is 3m 
long. What is the width of the carpet? 

Cartesian 
product/ 

combination 

CPM CPD 
A · B =  __ A · __ =  C 

Sara has A skirts, and 
B t-shirts, how many 
different outfits can 

she wear? 

Sara has C different skirts and t-shirt 
outfits to wear. If she has A skirts. How 

many t-shirts does she have? 

Table 1. Classification of multiplication and division word problems 
 
Boonlerts and Inprasitha (2013) analyzed multiplication topic in textbooks in Japan, Thailand and 
Singapore and concluded that Japanese textbooks include equal groups, multiplicative comparisons 
and rectangular array situations while Singapore textbooks provided equal groups and rectangular 
array situations. On the other hand, Thai textbooks focused only on equal groups situations. 
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Method  
Taking into account the importance of teaching and learning mathematics, combined with the 
difficulties faced by students in addressing the word problems, starting with the problems related to 
learning the concepts of multiplication and division, this research is designed. The types of 
multiplication and division word problems in the third grade textbooks in Bosnia and Herzegovina 
were analyzed.  
The issue of approving textbooks for primary and secondary schools in Bosnia and Herzegovina is 
under the jurisdiction of the Federal Ministry of Education and Science (FMON) and the Ministry 
of Education and Culture of the Republic of Srpska (MPKRS). In the school year 2016/2017 
FMON approved 3 mathematics textbooks for the third grade, while MPKRS has one obligatory 
textbook for the third grade of primary school. 
The aim of this research is to analyze the types of one-step multiplication and division word 
problems represented in mathematics textbooks for the third grade of primary school in Bosnia and 
Herzegovina. We define one-step multiplication and division word problem is one that answer to a 
problem can be obtained by applying one operation - multiplication or division. Those problems 
could be given in the mathematical and non-mathematical context.  
Research is based on framework presented in the paper, i.e. classification of word problems in 5 
categories: equal groups (EG), allocation / rate (AR), comparision (C), rectangular array / area of 
rectangle (RA), Cartesian product (CP) and identification of 18 types of one-step word problems. In 
this research we excluded  two types of word problems related to area od rectangle as students do 
not learn about area od rectangle in the third grade od primary school. 
The following research questions are formulated: 
What is the distribution of 5 categories of multiplication and division one-step word problems in the 
3rd grade textbooks approved for use in schools in Bosnia and Herzegovina?  
• To what extent do multiplication and division word problems in the 3rd grade mathematics 

textbooks reflect the proposed 16 types? 
• Compare distribution of 5 categories of problems in the 3rd grade textbooks. 
• Compare distribution of 16 types of problems in the 3rd grade textbooks. 
• Detect characteristic problems and possible misrepresentations. 

The sample was consisted of 4 mathematics textbooks for the 3rd grade of primary school approved 
by FMON and MONRS as follows: 

• T1 (publisher: Sarajevo Publishing (2014)); 

• T2 (publisher: Nam/ Vrijeme (2014)); 

• T3 (publisher: Bosanska knjiga/Bosanska riječ (2014)); 

• T4 (publisher: Zavod za udžbenike i nastavna sredstva (2016)). 

Results 
Analysis of one-step multiplication and division word problems presented in approved textbooks 
resulted in a response to the set research questions.  
Let's first point out the approaches to introducing multiplication and sharing content. Each 
introductory example in observed textbooks is illustrated. Textbooks T1, T2, T3 that are approved 
by FMON show both, multiplication of a number and multiplication by number. The multiplication 
of the number is presented systematically and uniformed for all numbers up to 10 based on which a 
multiplication table (multiplication of the number) is compiled. There are suggestions to pupils to 
create multiplication tables (multiplication by number) by themselves, in each of textbooks T1, T2 
and T3. In the textbook T4 which is approved by MPKRS, only multiplication of the number is 
processed and related multiplication tables are formed.  
In textbooks T1, T2, and T3 multiplication and division are presented alongside, simultaneously. 
Examples of division are merely examples of partition division, and then we can find problems both 
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about partition and quotition division. In textbook T4 multiplication and division are introduced 
separately, consecutively, first multiplication, then division. Examples of division are merely 
examples of quotation division, and then pupils are asked to resolve both partition and quotition 
division problems.  
The total number of tasks in the considered textbooks varies significantly as shown in Table 2. 

 T1 T2 T3 T4 
Multiplication 77 180 110 103 

Division  82 82 113 105 
Total  159 262 223 208 

Table 2. Number of multiplication and division tasks (numerical and word problems) 
The numbers of numerical and one-step word problems considering both multiplication and 
division in each of textbooks are given in the Table 3. 

 T1 T2 T3 T4 
Word 99 106 153 117 

Numerical 60 156 170    91 
Total  159 262 223 208 

Table 3. Number of numerical and word problems 
Numbers of asymmetrical and symmetrical one-step word problems are presented in the Table 4. It 
is obvious that asymmetrical problems dominate in textbooks. Symmetrical problems are present 
mostly in parts of textbooks dealing with commutative property of multiplication.  

 T1 T2 T3 T4 

Asymmetrical 92 96 145 116 

Symmetrical 7 10 14 1 

Total 99 106 159 117 

Table 4. Asymmetrical and symmetrical one-step word problems 
 

 
Chart 1. Distribution of 5 multiplicative structures in textbooks 

The distribution of five multiplicative categories is not uniform in all textbooks as shown in 
 Chart 1. 
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The equal groups problems are dominant in each textbook, followed by comparison problems. The 
absence of rectangular array/ area of rectangle problems as well as Cartesian product problems can 
be noticed. While the absence of area of rectangle problems can be justified by the fact that the area 
of rectangle and square is only taught in the fifth grade, there is no justification for the absence of 
rectangular array and Cartesian product problems. We compared the numbers of problems in each 
category in observed textbooks (Chart 2).  

 
Chart 2.  Numbers of problems in each category compared  

Presence of 16 types of one-step multiplication and division word problems varies in textbooks 
(Table 5). 
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T1 28 21 7 10 6 2 11 1 0 0 6 2 6 1 0 0 

T2 34 14 6 5 0 3 20 0 1 0 20 3 9 0 1 0 

T3 47 28 17 12 4 4 13 1 4 4 4 7 10 2 2 0 

T4 27 17 14 8 1 1 23 0 1 2 20 4 1 0 0 0 

Table 5.  Distribution of 16 types of one-step word problems 
In textbooks, the easiest types of word problems are the most common: equal groups multiplication 
(EGM) and partition division problems (EGP) and multiplicative comparison multiplication 
problems (CMM) followed with equal groups quotation division problems (EGQ) and 
multiplication comparison partition division problems (CLP).  To form numerical expression 
students simply need to follow the text of problem. The verbs directly suggest which operation has 
to be applied to solve problem.  
Conclusion 
Both textbooks and word problems take an important place in the process of teaching and learning 
mathematics. Carefully created textbooks in which various examples and assignments are presented 
can enhance the teaching and learning process of mathematics. Namely, certain research has shown 
that the inability of students to solve certain difficult types of tasks (problems) is a consequence of 
the fact that they did not meet these types of tasks during their teaching (Freeman and Porter, 1989, 
Olkun and Toluk, 2003). Therefore, an analysis of the contents of the textbook is indispensable. 
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This research has shown that the most common types of one-step multiplication and division word 
problems (EGM, EGP, CMM followed by EGQ and CLP) in the considered math textbooks for the 
3rd grade in Bosnia and Herzegovina are those that require the least mental effort of the students. 
The text, particularly the verbs used in those types of problems, directly indicates which operation 
to conduct in order to solve problems. On the other hand, the most difficult types of problems are 
under presented. Difficulty is reflected in the formation of a numerical expression using operation 
with counterintuitive meaning to the stated action in the text of the problem. Textbooks often 
contain only a few problems with unknown initial value, thus limiting students to meaningfully 
learn about multiplication and division. 
A small number or a complete absence of certain types of multiplication and division word 
problems denies pupils the ability to create new problem-solving schemes and to detect links 
between opposing problem types. Incorporating pairs and triples of problem types within one 
multiplicative structure, in the same context and numeric values, should help to create and link a 
problem-solving scheme and meaningful learning about multiplication and division. 
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THE TEXTBOOK IN MATHEMATICS: FINDINGS FROM A 
SYSTEMATIC REVIEW 

NATASJA STEEN and MATILDE STENHØJ MADSEN 
Abstract 
In this paper we investigate the question: ‘Which potentials and limitations of using textbooks in 
mathematics teaching can we identify?’ We answer this through a qualitative systematic review in 
two parts. First we conducted a descriptive review of 458 references that resulted in nine analytical 
themes, sorted into four categories: ‘the textbook’, ‘the textbook and the students’, ‘the textbook and 
the curriculum’ and ‘the textbook and the teacher’. The research is concerned with grade K-9. 
Second we conducted a qualitative synthesis of three of the analytical themes. 
In summary we found that the research has mainly focused on the textbook in relation to the teachers 
or the students and to a lesser degree in relation to the curriculum and concept development within 
the field. 

Introduction 
The background for this review was a disparity, described in the research literature, between 
prevalent use of textbooks and a lack of research concerning the implications of the use of 
textbooks. Studies have first and foremost been concerned with the content of textbooks, comparing 
textbooks and use of textbooks both in international and Nordic contexts (Fan 2013; Fan, Zhu & 
Miao 2013; Rezat & Strässer 2013) whereas fewer studies have been conducted concerning the 
correlation between the textbook and other variables (Fan 2013).  
It is primarily in the last three decades that the textbook has been the focus of research even though 
it is possible to find a few examples of research all the way back to the 1920s (Love & Pimm 1996; 
Fan 2013; Fan, Zhu & Miao 2013).  
In this paper, which in its majority is based on edited excerpts from a master’s thesis (Steen and 
Madsen 2016), we will provide an overview of the studies which have been carried out in the field 
and mention some of the results within the individual areas of focus. 
The review process 
In the following we describe the review process in general. We will hereafter elaborate on a few 
elements of this process. For a more complete description see the master’s thesis (Steen and 
Madsen 2016). 
The structure for the review is based on Fink (2014) and Gough, Oliver and Thomas (2012). This 
article describes our findings from a descriptive synthesis of the literature. 

Search for relevant literature 
In this review the search has been conducted in four databases; two Danish databases (bibliotek.dk 
and AU.library.dk) and two primarily English databases (ERIC and MathEduc). In Danish we 
searched for: ‘læreb*’ (textbook), ‘matematikb*’ (math book), ‘grundb*’ (course book) og 
‘lærem*’ (instructional materials) in combination with ‘matematikunderv*’ (teaching math). The 
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chosen English search terms were: ‘textbook’ or ‘curriculum material’ in combination with: 
‘mathematics’ or ‘mathematical’ and ‘education’, ‘teaching’ or ‘instruction’. 
 

 Criteria for inclusion Criteria for exclusion 

Type of 
source 

Published research article or book. Description from conferences and 
so-called proceedings are excluded; 

furthermore textbooks in 
mathematics are also excluded. 
It must be possible to obtain the 

article. 

Focus on 
textbooks 

The textbook must be a central 
focus in the source. 

The textbook is mentioned only in 
passing or in relation to other 
mathematical or mathematics 

educational topics. 

Educational 
level 

Must deal with grade level K-9. The publication only deals with 
other educational levels than grade 

level K-9. 

Focus on 
potentials or 
limitations 

The publication must include 
general empirical or theoretical 

findings concerning the potentials 
and limitations of textbooks. 

The publication only deals with 
textbook analyses of a few 

instructional materials. 

Language Available in Danish, English, 
Norwegian or Swedish. 

Available in other languages than 
Danish, English, Norwegian or 

Swedish. 

Quality of 
research 

The publication must meet general 
standards for good scientific 

method. 

The publication does not meet 
general standards for good 

scientific method. 

Table 1. Overview of criteria for inclusion and exclusion. The 15 original criteria for exclusion are here 
consolidated into six overriding criteria 

The search yielded a result of 404 sources including 22 duplicates, which resulted in a cumulative 
number of 382 sources. In addition to this we carried out a number of supplementary searches e.g. 
flicking through central mathematics education handbooks, which yielded an additional 76 sources. 
The search has most recently been repeated in May 2017 where we added a manual search of the 
journal Nordic Studies in Mathematics Education (NOMAD). The search yielded no new results 
compared to the first search in March 2016, while NOMAD led to the addition of 4 included and 3 
excluded articles. From the 458 sources 61 are included and 396 are excluded based on the criteria 
described in Table 1. 
 
We have calculated the geographical affiliation on the basis of where the research was conducted. 
Where this has not been possible we have checked what country the author’s professional practice 
was associated with at the time of publication. The 61 included articles are distributed in the 
following way: 
• 31 studies from the United States   
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• 21 studies from Europe (distributed between the countries Finland, the UK, Denmark, 
Sweden, the Netherlands, France, Norway, Belgium, Romania and Greece) 

• 2 studies from Asia (distributed between the countries Bhutan, China and Indonesia) 
• 1 study from Australia 
• 2 studies from the United States and China 
• 1 study from the United States and Australia 
• 4 international studies (via Trends in International Mathematics and Science Studies 

TIMSS) 
We decided that the search should not be limited by what year the research was conducted in. It 
turned out that the earliest source we found was from 1983. The included references are distributed 
over time in the following way: 1983-1989 (4 articles), 1990-1999 (8 articles), 2000-2009 (26 
articles) and 2010-2017 (24 articles). 
Developing the analytical themes 
The next part of the analysis was carried out in three steps. The first step was the in-depth reading 
of the 61 included articles. Reading the articles yielded a number of different themes related to our 
original research question. E.g. ‘What are the potentials of a textbook?’ ‘What are the limitations of 
a textbook?’, ‘What does the relationship between the textbook and the teacher signify for the 
teaching?’ and ‘What role does the textbook play in relation to the teacher and the teaching?’ These 
questions and the answers gave rise to a list of terms and themes, which were dealt with in one or 
more texts.  

 
Figure 1. Concept map visualising categories of analysis 

The second step was to process this list of terms and themes. We chose to draw up the concept map 
shown in Figure 1 because we perceived that the terms and themes had a great deal of correlation, 
which meant that we experienced difficulty in describing clearly separated categories of analysis.  
The choice of a concept map as a way to visualise the categories makes it possible to show these 
mutual interrelations. In the centre of the concept map we placed the term ‘The textbook’. Hereafter 
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we picked out the terms and themes from the list one by one and formulated their relation to the 
concept of the textbook. 
Furthermore, in connection with the composition of the concept map, we found that some terms and 
themes needed to be consolidated or split up in order to obtain a more precise description. For 
example, one of the early analytical themes ‘Reasons for over-reliance on the textbook’ includes 
both cultural and social reasons which are not associated with the textbook and reasons which were 
already included somewhere else (i.e. in the theme concerning ‘The teachers’ beliefs about the 
textbook’), which is why it no longer made sense to include this theme as an independent ‘branch’ 
in the concept map. As a result, we chose to include it in the category ‘the textbook and the 
teachers’. 
 
The third and final step was to use the concept map to consolidate the many terms, themes and their 
interrelations in meaningful overarching categories and subcategories (see Table 2). By describing 
the four overarching categories in the following we will outline the analytical themes and describe 
how these developed as a result of the elaboration of the concept map. 
 

MAIN CATEGORIES IN TEXTBOOK RESEARCH 

The 61 included sources are distributed between ‘categories and analytical themes’ as shown in 
Table 2. In the following we will elaborate on the categories individually. 
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Table 2. The included publications distributed between the categories. A complete reference list of the 

included publications can be found at 
https://drive.google.com/drive/folders/1hEvzScqpIxXI2ttTnR5XLbHk4AggtJ_A  

The textbook is… 
In the concept map two themes begin with the formulation ‘The textbook is…’. Both themes 
address attributes in the textbook itself without focusing on other influences on the teaching. We 
therefore found it meaningful to consolidate these two themes under the research category ‘The 
textbook is…’ This category contains 13 sources from a range of countries, with three from the 
United States and two from TIMSS with an international focus. Five sources are from Europe (two 
are from Sweden and are by the same author, one is from Finland, one is from the Netherlands and 
one is from Romania). One source is from China. One source has joint authors who together 
represent four countries (The Netherlands, France, Israel and the United States). 
The publications were published between 1996 and 2016 and hence cover a time period of 20 years. 
In this time frame the sources are distributed so that we have two texts published between 1996 and 
1999, six texts published between 2000 and 2009 and four texts published between 2010 and 2016. 
Two analytical themes fall under this category: ‘The concept the “textbook”’ and ‘The textbook as 
media’  
In this presentation we will focus on one of the two analytical themes, i.e. the one concerned with 
defining the term ‘textbook’. This part of the analysis is based on 11 publications, which were all 
published between 1996 and 2016. Our initial analysis of the sources showed that the descriptions 
of the textbook as a concept are distributed across nine approaches, which again can be divided into 
three different emphases when discussing the term ‘textbook’: ‘the textbook as artefact’, ‘the 
textbook processes information’ and ‘the textbook affords interaction between students and 
teachers’.  
In many of the definitions offered there is an explicit understanding of the textbook as a physical 
book. One example is Kong and Shi (2009, p. 270), who write, ‘Textbooks are printed material that 
is the most standard and typical among all teaching materials’. Other definitions have a more 
implicit understanding of a textbook as a physical book, e.g. Valverde, Bianchi, Wolfe, Schmidt 
and Houang (2002, p. 1): ‘They are fixed components providing an unchanging reference to the 
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nature of these school subjects…’ However, there are examples of definitions stating that electronic 
resources can also be perceived as textbooks, e.g. Stein, Remillard and Smith (2007, p. 323):  

While we use the terms curriculum materials and textbook (along with instructional resources 
and guides) somewhat interchangeably to refer to printed or electronic, often published, 
materials designed for use by teachers and students before, during and after mathematics 
instruction, many teachers and mathematics educators draw sharp delineations between the two. 

This diversity in emphasis corresponds well with Hansen (2008), who argues that an agreement 
concerning the framing of the broader term ‘instructional materials’ has not yet been reached. In 
addition, many varying terms are used internationally to describe this field (Knudsen 2011). We 
therefore endorse Remillard (2005), who finds there is a need for conceptual development in the 
field. 
The textbook and the students 
In our concept map there are three themes, which address the interplay between the textbook and 
the students in different ways. The themes are ‘the influence the textbook has on student learning’, 
‘the function of the textbook in relation to positioning students’ and ‘the students’ use of the 
textbook’. We have made these three themes part of the category ‘the textbook and the students’ in 
the mentioned wordings. 
This part of the review used 28 publications. Geographically they are distributed with nine from the 
United States, ten from Europe (four from Sweden, two from Belgium, one from Greece, one from 
Finland, one from Germany and one from the UK), one from Indonesia, two which originate from 
international studies (TIMSS) and five studies involving several countries (two from the 
UK/France/Germany, one from the United States/Australia, one from the United States/China, one 
from France/Norway and one from Cyprus/Ireland/Taiwan). 
The articles were published between 1987 and 2016. Of these six are from before 2000, eleven of 
them are from 2000-2009 and another eleven publications are from 2010-2016. 
The analytical theme ‘Student learning’ emerged from the question ‘Does the textbook make a 
difference?’ The 21 publications used in this part of the review are predominantly in agreement: 
only one (van Steenbrugge, Valcke & Desoete 2013) concludes that the textbook does not make a 
difference. In the rest of the studies some effect on the content of the teaching or the achievements 
of the students is shown.  
The analytical theme ‘Positioning of students (and teachers)’ might in principle also be found under 
the category ‘The textbook and the teachers’ since it includes both teachers and students and their 
interrelation. We have decided to keep them here, however, since the student perspective is the 
most prominent in the five publications in this subcategory. The texts are concerned with how one 
of the functions of the textbook is to stage or position the actors who interact with the book. 
Herbel-Eisenmann (2009) for instance studies how the teacher’s way of interacting with the book 
and the teacher’s language affects where the authority is placed. Herbel-Eisenmann describes how, 
by reading from the textbook, the teacher places the authority with the textbook. However, if the 
teacher later comments on the content of the text, she or he thereby places herself or himself on the 
same level as the text. 
‘Student textbook use’ is represented by the fewest number of publications in the review since only 
two publications are concerned with the students’ use of textbooks (Rezat 2013 and Cronberg 
2016). The articles are concerned with how the students use the textbook in relation to choosing 
content and which factors affect this choice. In a review of the collected data material we did not 
subsequently find other publications concerned with the students’ use of textbooks. We therefore 
find it meaningful to maintain this theme since it contributes to an area of textbook research which 
there has only been shed a tiny bit of light on. We will return to this consideration at the end of the 
article. 
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The textbook and the curriculum 
The textbook’s relation to the mathematical curriculum is activated through two different analytical 
themes which give rise to the unified category ‘The textbook and the curriculum’.  
The two themes concern respectively the textbook’s organisation as strand or spiral curricula and 
the curriculum’s influence on the textbook in connection with reforms. 
The category ‘The textbook and the curriculum’ contains 15 publications. These are geographically 
distributed with ten publications from the United States, three from Europe (one from Belgium, one 
from Denmark and one from Finland), one originating from an international study (TIMSS) and one 
is a comparison between circumstances in the United States and China. 
The articles were published between 1983 and 2014 and are distributed with four from 1983-1999, 
eight publications from the period 2000-2009 and three from 2010 onwards. 
The textbook and the teachers 
As a final relation the concept map points to a number of subcategories, which focus on the 
relationship between the textbook and the teacher. We have compiled these in a fourth and final 
category which we call ‘The textbook and the teachers’. 
We have found 40 publications, which belong to this category. Of these twenty-two are from the 
United States, nine are from Europe (four from Sweden, one from Finland, one from Belgium, one 
from Norway, one from Estonia/Finland/Norway and one from Sweden/Iceland), one from 
Australia, one from China, two originate from international studies (TIMSS) and five are studies 
which involve several countries at the same time (two from the UK/France/Germany, one from the 
United States/Australia and one from the Netherlands/France/Israel/the United States/Israel). 
They were published between 1988 and 2016 and are distributed in time with seven publications 
from the period 1988-1999, twenty-three publications from the period 2000-2009 and nine 
publications from 2010-2016. 
Unlike the very limited interest in the students’ use of textbooks, there is a greater research interest 
in the teachers’ use of textbooks. The analytical theme ‘Teacher textbook use’ contains texts, which 
deal with how the teacher uses the textbook. This translates into how closely the textbook is 
followed, what activities are involved and to what extent the textbook functions as a guidance tool. 
One example is Freeman and Porter (1989), who study the ways teachers use textbooks and thus to 
what extent the textbook dictates the content of the teaching. There are 24 publications, which are 
concerned with this theme. 
The analytical theme ‘The textbook and teacher learning’ consists of articles studying the 
opportunities of the textbook to affect the teacher learning. In the category are 17 publications 
published between 1998 and 2015. Of these 15 originate from the United States. 
We found during the analysis that the teachers’ experiences, attitudes and so on played an important 
role in the relation between teacher and textbook. Under the analytical theme ‘The textbook in 
relation to teacher beliefs’, texts, which reflect this perspective are collected. There are 11 
publications connected to this theme. An example of the significance of teachers’ beliefs in 
connection with the textbook is found in Collopy (2003), where the discrepancy between a teacher’s 
beliefs and the approach in a particular textbook resulted in the teacher choosing not to use the 
textbook. 
Concluding Remarks 
When one considers our source material it is obvious that the screened literature geographically 
focuses on the United States and a number of European countries. Only ten sources do not fit within 
this frame and of these seven are either international or combined studies covering the United States 
and another country. There is therefore an obvious geographical disparity in the results in relation to 
covering a broad overview of the field. This might be because research on textbooks in countries 
outside this geographical area simply has not been carried out, or because the research does not fall 
within the methodological inclusion criteria we have established. The disparity might also be 
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caused by the research being published in journals or in languages that have not been covered by 
the databases we consulted. It might therefore be relevant to repeat this review in other languages 
and in other parts of the world. 
In this review we developed categories of analysis which connect the textbook to the teachers, the 
students and the curriculum. We found that the research has mainly focused on the textbook in 
relation to the teachers or the students and to a lesser degree on the textbook’s relation to the 
curriculum and concept development within the field. 
During the research it became clear to us that there is no consensus about a definition of the concept 
of the textbook, which makes it harder to compare studies and extract general conclusions across 
studies. We therefore agree with Fan, Zhu and Miao (2013) that further concept development in the 
field and further study of the textbook in relation to other variables is necessary. 
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TEXTBOOK ANALYSIS IN UNIVERSITY TEACHER 
EDUCATION 

YSETTE WEISS 

Textbooks as mirrors for modern educational reforms 
In German middle and secondary schools, mathematical textbooks are extensively used in lesson 
preparation, in the classroom as well as for students’ homework. Lesson planning for mathematics 
was  and is generally done by mathematics teachers at school based on the mathematics textbook 
series used in that particular school. Also in preparation of the exercises for homework, tests and 
tasks for individual learning, mathematics textbooks still serve as an essential basis (Rezat 2009). 
An internal commission at school, consisting of all mathematics teachers, a parent and a student 
representing their respective groups, makes the selection of the mathematics schoolbook. In the last 
two decades, publishers and authors of textbooks had to adapt textbooks to competency models, 
reduced curricula and output orientation. The mathematics teachers at each school in particular 
were asked to prepare concretised school curricula based on very general educational standards and 
competency models. That way since the so-called Pisa shock, the German education system has 
undergone subtly comprehensive restructuring, the concept of "Bildung" (usually translated as 
“education”) being replaced by the notion of “Ausbildung” (training) accompanied by a gradual 
economisation of the educational system during the last decade. All this had and has implications 
on language, approaches to problems as well as on the knowledge relevant to action, prognosis and 
orientation of our student mathematics teachers. Mathematics education is a reflective science. An 
important goal of university courses in this area should support the discourse about educational 
reforms and related changes to educational values. The analysis of the last editions of various 
modern mathematics textbooks is an excellent way to understand the implications of these reforms 
on general education (Allgemeinbildung) and expertise, it supports a comparative view on the 
everyday world and allows to disturb widespread routines. 
Mathematics Textbooks as the continuous path connecting the former pupil’s life with 
the life to come as a teacher 
Taking into consideration the long German tradition of textbook development and the use of 
schoolbooks in mathematics classes (cf. Otte 1981), it is even more astonishing that there are hardly 
any canonical subjects in mathematics teacher education at university related to mathematics 
textbook analysis. A major problem of teacher training is the often cited double discontinuity:  

The young university student finds himself, at the outset, confronted with problems, which do 
not remember, in any particular, the things with which he had been concerned at school. […] 
When, after finishing his course of study, he becomes a teacher […] he will be scarcely able, 
unaided, to discern any connection between this task and his university mathematics (Klein 
2016, p. 1). 

As an approach to deal with the double discontinuity we look at mathematics textbooks as the 
continuous path connecting the former pupil's life with the life to come as a teacher. Because of the 
long tradition of some very wide used textbook series like “Die Elemente der Mathematik” and 
“Lambacher Schweizer” students can work on different editions of one textbook they were learning 
with as a pupils in school and they are likely to work with as a teacher. The study of "familiar" 
textbooks from the perspective of a teacher or author enables a direct approach to discontinuity and 
makes available various tools to support the maturation from student to teacher. 
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Mathematical Textbooks as historical artefacts 
Mathematical textbook series are also historical sources to study the history of education. Of the 
textbook series "Elemente der Mathematik", one can easily find hard cover versions of different 
editions tracing back to the middle of the 19th century  (Reidt 1868) as well a digitalised version of 
Reidt's exercise book  (Reidt 1884). A comparative analysis of the different editions related to 
important periods and reforms in mathematics education, like the "New Geometry (Neue 
Geometrie)", "reform pedagogy (Reformpädagogik)", "transformation geometry 
(Abbildungsgeometrie)" "Algebraic Analysis (Algebraische Analysis)", "functional thinking 
(Erziehung zum Funktionalen Denken)", "the introduction of differential and integral calculus", 
"Mathematical applications", "New Maths and set theory", "Modeling and Realistic Maths" and 
"Output and Compentcy orientation in mathematics". It is also quite instructive, from a 
cultural-historical perspective, to compare the design of the exercises and applications from 
different periods. Moreover, comparative studies between reforms and traditions in different 
national educational systems as done by Gispert and Schubring (Gispert & Schubring 2011) can 
inspire the search for traces and implementation of described reforms in the textbooks of the studied 
countries. 
Textbook Analysis as preparation for teacher practice 
Teacher education for German Gymnasia consists of two parts in the federal state Rhineland 
Palatinate: a university study with a Bachelor's and a Master's degree (5 years) and a teacher 
training as interns (18 month). University teacher education in Germany has to deal with two basic 
principles at once, which partly exclude each other: On the one hand, courses in mathematics and 
mathematics education introduce students to scientific disciplines according to the concept of unity 
of research and teaching, whereby research should aim at insight and not at profit and usefulness. 
On the other hand, instantly after obtaining the university degree teachers have to teach at own 
responsibility because of cuttings in education and the reduction of teacher training from 2 years to 
1.5 years. No wonder students expect to be trained in practical matters as lesson planning and 
primarily consider everything related to teacher training as useful.  
Textbook analysis gives the possibility to combine the training of practical skills with the study of 
history of education, concept development and research design. Nevertheless, from our experiences 
related to reflection in lesson planning as well as on mathematical concept development only very 
few prerequisites can be assumed. Assessments of the capabilities of our students show that they 
master the reproduction of information and texts very well. They work hard on the perfection of 
presentational skills. Their strengths also include the use of modern media to access information 
and pattern recognition skills. Their weaknesses lie in their conceptual understanding. 
Volker Ladenthin’s description of contemporary students’ problems confirms our experience: 

Students are barely able to use abstractions. One has to speak in examples - and they will be 
happy to discuss on the level of examples. However, generalization and transfer of expertise 
hardly succeed. To transmit the statements of ancient authors (Aristotle) in contemporary 
parlance fails less due to fragmentary historical knowledge than to the lack of transferability. 
Textual analysis is done very vaguely and always very generally, (“Comenius says that school is 
good for the people”). Syntheses are created additively and is by no means nuanced. Judgments 
are linear (not multi-perspective)  (Ladenthin, 2014, p. 17). 

The analysis of the design of a mathematics textbook, its presentation of basic information, 
classification of exercises, implicit or explicit concept development, the choice of examples to work 
exemplary as well as the choice of contexts and applications support conceptual understanding of 
mathematical notions. The latter can be guided and adapted to different prerequisites by the choice 
of material, questions for reflection, tools for structuring, and the provision of solution schemes. 
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Mathematical textbooks as a tool to change perspectives from student to author 
Textbook analysis is also an excellent way to change perspectives from that of a student (solving 
tasks) to that of a teacher (lesson planning with tasks) to that of an author: what is the conceptual 
understanding of the notion? Which tasks are in the zone of proximal development of a possible 
student?  
In our experience, this change of perspective does not happen automatically. Quite often students 
do the didactical analysis of a mathematical concept development not from the perspective of the 
teacher, but from the pupil's perspective. A typical approach of our students to lesson planning is 
the search for an "activating" introductional problem in textbooks or the Internet. "Activating" 
means here "making the pupils active in a psychological sense" and is related to methodological 
criteria, such as the form of cooperation or the integration of material tools. From a pedagogical 
point of view the students act from a teacher's perspective, since they try to organize and arrange 
activities and cooperation of pupils in the classroom. Thereby the search for methodological 
suitable "activating" tasks and exercises is often accompanied by the search for their solutions, also 
in textbooks or the Internet. The level of difficulty and time necessary for the solutions of the 
activating exercises are often assessed intuitively and not on the base of a self-conducted detailed 
solution. The work with mathematical textbooks provides possibilities to make the different 
perspectives explicit and to differentiate them from each through different tasks and activities with 
the textbook. Pupil's views are taken up by solving tasks and exercises and approaches. The 
perspective of a teacher comes with the comparison of different solutions, their systematization and 
their study as part of the concept development of the involved mathematical notion. The perspective 
of an author is taken when comparing different textbooks and analysing the roles of the different 
examples and tasks. 
Explicit demarcation of the different perspectives and assistance in the form of reflection questions 
help students to assume the role of the teacher not only in the context of classroom management but 
also as experts in school mathematics and its suitable presentation as well as to feel responsible for 
the latter. 
Development of a Concept of a seminar on textbook analysis 
In the following, we present the concept of a seminar on textbook analysis, which has been held and 
developed in action research over seven years in 17 different groups. It is part of master’s degree 
studies at the university Mainz in Germany. The aim of the seminar is to get acquainted with 
different mathematics textbook designs with regard to implicit or explicit introduction of 
mathematical concepts, different contextualisation, systematisation and formalisation of the 
contextualised concepts, differentiation in exercise tasks, as well as the comparative analyses on 
specific topics. The sessions of the seminar are held by one or two students in form of workshops. 
During the semester (6 months) before the seminar, there is a lecture course about chosen 
mathematical concepts from the curriculum of secondary school maths. In this lecture course 
research methods of mathematical education as well as "Stoffdidaktik" and task-related aspects of 
mathematical concept development are presented and discussed exemplary. The seminar deepens 
the topics of the lecture course, so the subjects of the 14 sessions are close to those of the lectures.  
The present choice of topics and examples in the lecture course is one of the results of an action 
research in the seminars and an answer to the question which mathematical concepts of secondary 
school mathematics are suitable for a comparative analysis of textbooks. In the first seminars 7 
years ago we primarily tried to find subjects and topics combing goals of mathematics teacher 
training like lesson planning with educational objectives of the scientific discipline mathematics 
education. Therefore the first seminars studied a wide range of topics concerning analysis, linear 
algebra/analytic geometry as well as stochastic and concentrated on suitable topics for analysis and 
variation mathematical problems and tasks from actual mathematics schoolbooks. In the following 
reflection of the seminars it became obvious, that most of the students had problems to analyse even 
canonical exercises, prerequisites, learning goals and methodology a fortiori to vary them. A first 
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step was to limit ourselves to the analysis of tasks and to try variation of tasks only for chosen 
suitable examples.  
Another result of the reflections was the study not only of exercises and practice but also other parts 
of concept development of a mathematical notion in mathematics schoolbooks. 
The typical design of actual German mathematics textbook is: a) repetition b) introductive and 
propaedeutic problems and tasks, c) unification, systematisation, formalisation of the introductive 
problems, d) standard solutions, e) presentation of basic knowledge f) exercises, d) excursions. 
 Therefore, in the changed concept students could choose which part of concept development they 
wanted to explore. Most of them decided to study introductory and propaedeutic problems. As a 
result of the analysis and discussions of the student's essays we decided also to limit the topics to 
analysis and to discuss only basic notions which were preliminary discussed in detail during the 
lecture course: real number, function, limit of series, differential and integral. The current concept 
of the seminar students compares - for a given mathematical notion, like limit - its presentation in 
three different modern textbooks. This analysis is guided by general questions about introductory 
problems (implicit or explicit concept development, inductive or deductive approach), tasks and 
solution schemes, tools for generalisation and unification, categories and differentiation of 
exercises, excursions. The analyses of this common subject are discussed during the seminar and 
are part of an essay made by every student. In addition, in every session a student presents her or his 
textbook analysis related to one of the mentioned mathematical concepts and on its basis a plan of 
its concept exposition for the classroom. Additional materials are older textbooks, didactic articles 
about the mathematical notion and the material from the lecture course. The comparative analysis of 
the concept development in the schoolbooks with the alternative developed by the student 
constitutes the second part of the essay. The earlier described student's, teacher's and author's points 
of views are structuring tools to support the change of perspective from pupil to author. 
The work from a pupil's perspective, i.e. detailed solution schemes of exercises to the concept to be 
discussed in the seminar are done in advance of the sessions as homework of all students. 
Conclusions 
Working with a textbook also provides tools to deal with different levels of awareness (Mason 
1998). It takes a longer time and accompanying guidance until the students themselves ask 
questions concerning not only the solution of a task but also about the educational value, the 
development of meaning and about the existence of mathematical objects. The continuous reflection 
on the handling of textbooks in the frame of action research supported this maturing process.  The 
developed criteria and categories for textbook analysis take into account the expertise and skills of 
the students and support the transition between using textbooks as a student and using the textbook 
as a teaching tool. 
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RATIOS AND PROPORTIONS IN ICELAND 1716–2016 
KRISTÍN BJARNADÓTTIR  
Abstract 
The topics of ratios and proportions are investigated in the oldest Icelandic arithmetic textbook, 
Arithmetica Islandica of 1716, preserved in the manuscript Lbs. 1694 8vo. The conjecture that it is a 
translation of the printed Danish Arithmetica Danica of 1649 is rejected, while there may be some 
transmissions of ideas. In continuation, the history of teaching ratio and proportions from 
Arithmetica Danica until the latest textbook in Icelandic, Skali of 2016, is investigated and related to 
recent research on obstacles in proportional reasoning.    
Introduction 
Arithmetic textbooks, written in the Icelandic language, have a history from 1716 until present. This 
study concerns both ends of this sequence. The content of Arithmetica Islandica of 1716, as 
preserved in a manuscript, is analysed with respect to works influencing it. Certain sources suggest 
that Arithmetica Danica, written in Latin by Geo Frommius (1649), was a model for Arithmetica 
Islandica, which in turn might be considered as an abridged version, comparing the sizes of the 
textbooks. Arithmetica Islandica may, however, have more models, and exercises in Arithmetica 
Islandica are also found in other younger arithmetic manuscripts. 
The study focuses on the history of teaching ratios and proportions, and a comparison of its 
teaching in arithmetic textbooks. The books range from Arithmetica Danica and Arithmetica 
Islandica to Skali, an adapted translation of a Norwegian textbook series (Tofteberg, Tangen, 
Stedøy-Johansen & Alseth 2017) into Icelandic, the latest textbook series for the lower secondary 
level.  
Textbook writing in Icelandic 
During seven centuries from around 1100 until 1800 there were two episcopal seats in Iceland, with 
cathedrals and cathedral schools, one of each in Northern Iceland and in the South. The schools 
served to educate priests and officials. As Iceland belonged to the Danish Realm, university 
education had to be sought in Copenhagen, Denmark. A printing press, imported in the mid-16th 
century, mostly printed religious books, while secular works were printed in Copenhagen. After 
around year 1800, the printing press was no longer in the charge of the Church, and gradually, 
education literature became produced domestically.  
The population of Iceland was 50,000 in 1703 and did not rise until the 19th century. The population 
in 2017 was 340,000. Persons, knowledgeable in Latin in the early 18th century, were 245 
clergymen, 7 headmasters and teachers, and about 60 other graduates from one of the two schools 
and even from a university abroad, as recorded in the 1703 census (Statistics Iceland, Table 3.2, 
Occupations in 1703). In spite of a great distance from the mainland of Europe, which made 
communication by sailing only possible during summer, a considerable collection of European 
books existed in Iceland in possession of the learned elite, the clergy or the cathedrals. Among them 
were the mathematics books Arithmeticae practicae methodus facilis by Gemma Frisius, published 
in Antwerpen in 1540; Arithmeticae libri Duo by Petrus Ramus, Basil 1569; Arithmetica Danica by 
Jørgen From alias Geo Frommius, Copenhagen 1649; and Compendium Arithmeticum eller vejviser 
by Søren Matthisen, Copenhagen 1680 (Bjarnadóttir 2007, 58, 61–62; Ulff-Møller 2008). 
Foreign literature was often translated, frequently in extracts. German and Danish books were the 
main foreign literary sources in Iceland after its Lutheran Reformation in 1550. The educated 
public, mainly clergymen, prepared the first copies of manuscripts by translating and/or adapting 
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foreign texts, or even composing own texts. The manuscripts circulated from parish to parish. At 
least three early 18th century arithmetic texts in manuscripts exist presently in libraries. The oldest 
of them is Arithmetica Islandica in Lbs. 1694 8vo, dated 1716 on its front page. The text itself 
suggests the date 1733 which may be the date of the extant manuscript. 
The first substantial printed arithmetic textbook in Icelandic was published in 1780. Up to 1910s, 
textbooks began teaching arithmetic from scratch as schools were scarce. During 1920s–1960s, the 
arithmetic textbook tradition continued in two phases, each intended for primary and lower 
secondary education. Since the 1970s, featuring a series highly influenced by the New Math, five 
textbook series have been published for the lower secondary school level, all by a state textbook 
publishing house. The latest of them is a Norwegian arithmetic textbook series, recently translated 
into Icelandic, Skali (Tofteberg et al. 2015; 2017). 
Learning Ratios and Proportions 
For centuries, proportional problems were solved by a method called in Latin Regula Trium, the 
Rule of Three. The method consists of finding the fourth proportional to three known quantities. It 
is traced back to Italian merchants in late medieval times, described in arithmetic books, the libri 
d’abbaco (Van Egmond 1980), while the way of thinking in the Rule of Three can be found in 
ancient Indian works by Brahmagupta (597–668) and Bhaskara II (1114–1185) (Tropfke 1980).  
Proportional reasoning is considered a unifying theme in mathematics. It involves a sense of 
co-variation and the ability to make multiple comparisons in relative terms. The skills needed for 
proportional reasoning include multiplicative and relational thinking; and a highly developed 
understanding of foundational concepts, including fractions, decimals, multiplication, division, and 
scaling (Van de Walle, Karp & Bay-Williams 2010).  
Many researchers have elaborated on students’ understanding of proportions and proportional 
concepts. Keranto (1994) lead a teaching experiment focussing on developing proportional 
reasoning and ratio concept in the eighth grade where the problems were first learned to be solved 
mentally, emphasizing the unit-rate method, then in writing, using proportions. In this way, the 
pupils’ real-world experiences and spontaneous models of solution were utilized naturally in 
teaching. 
De Bock, Van Dooren and Verschaffel (2013) conducted two studies on students’ ability to model 
textual description of situations with different kinds of representations of functions: 
• proportional, y = kx  
• inverse proportional, y = k/x, x ≠ 0, and 
• affine, y = kx + b, b ≠ 0. 

Their results indicate that 
• students tend to confuse these models, and 
• the representational mode has an impact on this confusion. 

When investigating students’ ability to link representations of proportional, inverse proportional, 
and affine functions to other representations of the same functions, results indicated that students 
make most errors for decreasing functions. The number and nature of the errors also strongly 
depended on the kind of representational connection to be made. In both studies, mutual confusion 
between two increasing, and between two decreasing functions was reported. Both studies provided 
evidence for a strong impact of representations in students’ thinking about these different types of 
functions. In a mathematical modelling context, graphical representations were helpful in most 
cases to detect the model underlying a realistic situation. For mutually connecting representations, 
tabular representations, providing concrete function values, proved to be most supportive. 
The study 
The following study is divided into two parts: 

1. Comparison of Arithmetica Danica (Frommius 1649) and Arithmetica Islandica, contained 
in manuscript Lbs. 1694 8vo (1716/1733). 
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2. Presentations of ratio and proportions in 18th, 19th and 20th century books, up to Skali 
(Tofteberg, et al.2015; 2017), 

The questions are: 
1. Is Arithmetica Islandica an adapted extract of Arithmetica Danica? 
2. How has the presentation of ratio and proportions developed during the 300-year period 

between the two arithmetic works, Arithmetica Islandica and Skali?  
The contents of Arithmetica Danica and Arithmetica Islandica will be listed side by side, thus 
comparing their order and length of content. The Regula Trium Directa and Regula Trium Inversa, 
the ancient rules to solve directly proportional and inversely proportional tasks, will be examined 
and contrasted by other methods, such as verbal, tabular, algebraic, geometrical and graphical 
representations.   
The two arithmeticas 

Arithmetica Islandica 
The manuscript Arithmetica Islandica of 1716 is the oldest arithmetic textbook in the Icelandic 
language from modern times. Earlier works are encyclopaedic. This arithmetic treatise on 73 
handwritten sheets, 146 pages, is a part of a larger manuscript, Lbs. 1694 8vo, contained in pages 
37r–109v. A senior enforcement officer of the 18th century Iceland, Skúli Magnússon (1947), 
recounts in his biography that his father, clergyman Magnús Einarsson (1675–1728), had made a 
free translation of Arithmetica Danica. The time period and name of the treatise suggests that 
Arithmetica Islandica could be its free and adapted translation. 

 
Figure 1: The title: “Arithmetica Islandica Skrifað Anno MDCCXVI” (Lbs. 1694 8vo, 37r). 

On its front page, it says “Arithmetica Islandica, Skrifað Anno MDCCXVI” [… written in 1716]. 
Later in the work, the year 1733 is mentioned as the current year’s datum, suggesting that the date 
of the extant copy is 1733.   

 
Figure 2. “How old is now in this year, Ao 1733, the book which was printed in Ao 1611?” (Lbs. 1694 8vo, 

54v). 
After discussing the meaning of the terms arithmetica, geometrica, astronomia etc., the text 
continues into Numeratio, numeration, reading large numbers in Hindu-Arabic number notation as 
well as Roman notation, similar to Arithmetica Danica without any identical examples. The text 
goes further into monetary, measuring and time units. These topics were important for the Icelandic 
public in their trade with foreign merchants while these matters are not mentioned in Arithmetica 
Danica. The treatise continues through the four arithmetic operations in whole numbers and the 
various units. Both works explain Probatio, that multiplication and division can probate each other.  
The second section, Progressio, is about sequences, such as the odd numbers: 1, 3, 5, 7, …; and 
every third number: 1, 4, 7, 10, …; the even numbers: 2, 4, 6, 8, 10, … and then further into 
decreasing sequences, followed by geometric sequences: 1, 2, 4, 8, 16, …; 1, 3, 9, 27, … The third 
section concerns fractions; first a definition, then reduction, and the four arithmetic operations. The 
fourth section is called Regula Trium, the Rule of Three, which is claimed to be most useful and 
indispensable to all those who exercise the art of reckoning.  

Arithmetica Danica 
 



 Ratios and Proportions in Iceland 

 233 

The title of the book is Arithmetica Danica seu brevis ac perspicua institutio arithmeticae vulgaris 
(Frommius 1649). It is a total of 164 pages, written in Latin by the Dane Jørgen From whose 
Latinised name is Geo Frommius. Book one is named De Arithmetica Simplici, on simple 
arithmetic: numeration, including Roman numerals, and the four arithmetic operations in whole 
numbers; notation of fractions, their reduction and least common multiple, and the four operations; 
and extraction of quadratic and cubic roots.  
Book two is named De Arithmetica Comparata, on comparative arithmetic. It contains ratios 
between numbers, proportions and progressions, i.e. sequences; Regula Trium, i.e. Rule of Three; 
the inverse Rule of Three, the composite Rule of Three, Regula Societatum and Regula Falsi 
together with further elaboration on proportions.  
Arithmetica Danica was a registered property of the South Cathedral Skálholt in 1744 (Ágústsson 
& Eldjárn 1992). Concerning the conjecture that clergyman Magnús Einarsson wrote the 
Arithmetica Islandica one must consider that a clergyman in Northern Iceland may only have seen 
Arithmetica Danica but not had it by hand. Einarsson, however, had a young 
mathematically-inclined teacher, Jón Árnason, at the North Cathedral School, Hólar, from 1692. 
Árnason became bishop and served at the south episcopal seat Skálholt during 1722–1743 (Ólason 
1950). The estate at his death, dated May 4, 1743, reveals that he possessed foreign mathematical 
books, among them Arithmetica Danica, the aforementioned Sören Matthisen’s Arithmetica, and a 
biblical Arithmetica by Jacob Borrebye (The National Archives of Iceland). This leads to the 
conjecture that Árnason brought the book with him from his studies in Copenhagen in 1722 when 
he began teaching at the Hólar North Cathedral School. Einarsson, then 17-year-old, may have 
made his own copy from his teacher’s notes, tailored after Arithmetica Danica. Bishop Árnason 
may have bequeathed the book to Skálholt cathedral later. 
We know that Bishop Árnason was the best mathematician in Iceland of his time, but indeed there 
was not much competition. He published a book in 1739, Dactylismus Ecclesiasticus eður 
Fingra-Rím, (Árnason 1838), to present the Gregorian Calendar that was adopted in year 1700 in 
the Danish Realm. It also introduced for the first time in print the domestic farmers’ calendar, an 
ancient week-based calendar (Bjarnadóttir 2016). 
Comparison of contents of Arithmetica Danica and Arithmetica Islandica 
In Table 1, the length, size and overview of the contents of Arithmetica Danica and Arithmetica 
Islandica, are presented. The reader should keep in mind that Arithmetica Islandica was a 
manuscript in a smaller size than the printed Arithmetica Danica. 
 

Arithmetica Danica (108 pp. in 4°) Arithmetica Islandica (146 pp. in 8°)  

 Book 1, De Arithmetica 
Simplici 

[I]  

Cap. 1–2 
(17. p.) 

Definitions, number 
notation, literature examples 

Introduction (19 
pp.) 

Translation of terms, number 
notation, measuring and 

monetary units 
Cap. 3–6  
(20 pp.) 

Addition, subtraction, 
multiplication, division 

(56 pp.) Addition, subtraction, 
multiplication, division 

Cap. 7–13  
(15 pp.) 

Fractions: notation, 
reduction, the four 

operations, compound 
fractions 
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Cap. 14–15  
(13 pp.) 

Extraction of square root and 
cubic root   

    

 Book 2, De Arithmetica 
Comparata 

    

Cap. 1–2  
(11 pp.) 

Ratios, proportions and 
progressions 

II Progressio  
(14 pp.) 

 Progressions 

    III Fractions  
(25 pp.)  

Fractions: notation, reduction, 
the four operations 

Cap. 3–4  
(9 pp.) 

Regula Trium Directa, 
Regula Trium Inversa 

IV Regula 
Trium (16 pp.) 

Regula Trium Directa, Regula 
Trium Inversa aut Obliqua 

Cap. 5–7  
(19 pp.) 

Regula Trium Composita, 
Regula Societatum, Regula 

falsi 

(16 pp.) Regula Trium Dupla, Regula 
Duple Reciproca, Regula 

Alligationes, Regula Consortio  

Table 1: Comparison of the contents of Arithmetica Danica and Arithmetica Islandica 
One notices that the order of the contents is different. Progressions are presented before fractions in 
Arithmetica Islandica. Furthermore, the examples given are completely different. The Icelandic 
examples refer to Icelandic environment and circumstances, while in Arithmetica Danica many of 
them are historical. 
Comparing Regula Trium Directa 
Arithmetica Danica 
The Regula Trium, the Rule of Three, is introduced by the following text (in a crude translation):  

On account of its immeasurable usefulness, this proportional rule deservedly is highly valued as 
Aurea [Golden]: which, given that out of three known parts, with definite calculation of arranged 
numbers, leads the way to the fourth (Frommius 1649, 76). 

In continuation, the author refers to Euclid’s Elements, proposition 19, book 7: 
If four numbers be proportional, the number produced from the first and fourth will be equal to 
the number produced from the second and the third; and if the number produced from the first 
and fourth be equal to that produced from the second and third, the four numbers will be 
proportional (Euclid 1956, 318). 

The author takes an example of that 2 times 9 is equal to 3 times 6: 

  
Figure 3: “… the number produced from the first and fourth will be equal to the number produced from the 

second and the third …”, (Frommius 1649, 77). 
The author then describes the method of the Rule of Three: Four numbers are to be arranged so that 
the first and the third are of the same kind and the second of the same kind as the fourth. When one 
wanted to know the fourth number, the second and the third should be multiplied together. The 
product should be divided by the first number to give the sought after fourth number (Frommius 
1649, 77–78). Example: 

 
Figure 4: Finding the fourth unknown proportional (Frommius 1649, 77). 
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Arithmetica Islandica 
The introduction to the direct Rule of Three tells the reader that the rule is indispensable for all 
those who practice the art of reckoning and can rightly be called [Regula] Aurea, that is the golden 
rule, because as gold stands out of other metals, so it surpasses other rules. The method presented is 
similar to that in Arithmetica Danica: The first and the third numbers are to be of the same kind, 
and the second of the same kind as the unknown fourth. The second and third numbers are to be 
multiplied together and divided by the first to gain the fourth (Lbs. 1694 8vo, 94r–95r). The 
problems are domestic. A typical question is: If 30 eiderduck-eggs weigh 12 marks, what then 
weigh 135 [eggs]? 

 
Figure 5: The weight of 135 eiderduck-eggs by the Rule of Three (Lbs. 1694 8vo, 95v).  

Comparing Regula Trium Inversa 
Both books explain the inverse rule such that the less the first number is to the third, the more is the 
second to the fourth unknown, and vice versa, assuming the same sequence as before.  
An example from Arithmetica Islandica:  

To complete a work during 16 weeks, 9 men are needed. How many men are needed for the 
same work during 24 weeks? (Lbs. 1694 8vo, 100v). 

Solution: Multiply the first and second numbers and divide the product by the third to gain 6 men, 
see Figure 6. 

  
Figure 6: Finding the number of men to complete a work by the inverse Rule of Three  

(Lbs.1694 8vo, 100v).  
Examples in Arithmetica Islandica also found in other works 
Several arithmetic examples have circulated in Protestant Europe. A textbook by the Protestant 
Sigismund Suevus (1593), Arithmetica Historica. Die löbliche Rechenkunst, contained a number of 
arithmetic examples, disguised in biblical dress. These examples showed up in later textbooks, such 
as Euler’s (1738) Einleitung zur Rechenkunst, and at least two Icelandic textbooks in manuscripts, 
one of them Arithmetica Islandica and the other manuscript ÍB 217 4to Arithmetica – Það er 
reikningslist [That is Reckoning Art], presumably written in 1721 (Bjarnadóttir, 2011).  
Among those examples is a story about the age of Methusalem. Examples about the number of 
hours in a year, and the circumference of the Earth, both appear by Suevus (1593), ÍB217 4to of 
1721, and Euler (1738), illustrating how examples were copied from one textbook to another in 
early modern times. Neither of these examples, however, appear in Arithmetica Danica, which is 
entirely void of practical examples, nor in Compendium Arithmeticum by Matthiesen (1680) which 
is known to have been in the possession of Bishop Árnason (The National Archives of Iceland).     
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Presentations of ratio and proportions in recent centuries 

Iceland in 1780–1900 
A number of calamities fell upon Icelanders in the 18th century. Among Danish subsidies after 
mid-18th century, were grants to printing the first substantial arithmetic textbooks, written in 
Icelandic by Olavius (1780) and Stefánsson (1785), both printed in Copenhagen. No further 
mathematics textbooks were printed until 1841. Olavius (1780, 172–178, 290–294) explained that 
the task in the Rule of Three, the Golden Rule (regula aurea), was to find the fourth term in a 
geometric equality. The numbers were to be arranged with the fourth term missing, such as 4 – 12 – 
6 – X. Then the working method was: Multiply middle term and rear term and divide by the front 
term. 
Stefánsson’s (1785, 132–137) method to find the fourth proportional number is the same as in 
Arithmetica Danica: multiply the second and the third term and divide by the first term, assuming 
the same order. Stefánsson’s son edited the book when preparing it for print in Copenhagen. In that 
new version, the phrase is found: “it is also called the golden rule or Regula aurea for its 
supremacy, because as much superiority as gold has over other metals, so much it surpasses other 
arithmetic rules” (Stefánsson, 1785, 132). The similarity of this phrase to that of Arithmetica 
Islandica, especially the word “yfirgengur” [surpasses] suggests that the son knew that work. 
However, the term Regula aurea may be found in many, or most, arithmetic textbooks of early 
modern age.   
Briem (1869) wrote an influential textbook, used in the emerging lower secondary schools from the 
1870s. The search for the unknown in direct Rule of Three was to find a number that is as many 
times greater or less than the middle term, as the rear term is greater or less than the front term in 
the sequence of the three known proportional numbers. 

England in the 19th century 
J. Stedall (2012, 56) said in The history of mathematics – A very short introduction: 

The Rule of Three was a rule that enabled countless generations of students to answer questions 
like: A men dig a ditch in B days, how long would it take C men to do the same job?   

A 19th century English century school boy was not expected to start doing anything on his own 
initiative. He would be taught that he must multiply A by B and divide by C.  

Problems of that kind, digging ditches, were still taught in Iceland in the 1970s (Gíslason 1962, 52).   

Iceland in 1920–1960 
Mathematician Ó. Daníelsson was an undisputed leader of secondary mathematics education during 
1920s–1960s. He presented by examples two cases, the direct and the inverse Rule of Three:  
Case I:     Case II: 
4 meters cost 3 crowns  4 men complete a work in 3 days 
6 meters cost x crowns  6 men complete the work in x days 
In the two cases the student is to consider the ratios 6/4 and 4/6. Which to choose depends on 
whether the outcome should be greater or less than the known number 3. 
In case I, one should choose to multiply 3 by 6/4 to gain the answer 4 ½ crowns. 
In case II, one is to multiply 3 by 4/6 and the answer is 2 days (Daníelsson 1938, 45–46).  
Gíslason (1962, 45–52) tried to modify the method by inserting a unit sentence: 
1 meter costs ¾ crowns   1 man completes the work in 3·4 days 
This procedure was expected to make it easier for the reader to decide if to continue by multiplying 
or dividing.  
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Present times 

Skali 2015–2017 
By the introduction of the New Math, methods and procedures became objects of scrutiny. The term 
Rule of Three disappeared. Proportions, however, continued in the curriculum. With improved 
printing technology, they became represented in a great variety of ways: verbally, tabular, 
geometrically, graphically, and algebraically in functions. The latest arithmetic textbook series for 
the lower secondary school level is a Norwegian series in six volumes, Maximum, termed Skali in 
Icelandic. In Skali 2A (Tofteberg et al. 2015) for the 14-year age, the ratio of mass to volume is 
examined by the students by drawing a double number line, see Figure 7.  

 
 

Figure 7: The ratio of mass in kg to volume in cm3 (Tofteberg et al. 2015, 172). 
Students are also trained in recognizing direct proportionality as a linear function including the pair 
of coordinates of Origo, (0,0). In continuation, in Skali 3B (Tofteberg et al. 2017), they learn about 
the characteristics of the graph of inversely proportional quantities, see Figure 8.  

 
Figure 8: Sharing cost between varying number of participants (Tofteberg et al. 2017, 30).   

Students also practice distinguishing between the various types of functions, such as:  
• proportional    (4): y = kx  
• inversely proportional  (3): y = k/x,  
• quadratic    (1): y = k·x2  
• affine     (2): y = kx + b, see Figure 9. 

 

 
Figure 9: Students practice distinguishing between different types of functions  

(Tofteberg et al. 2017, 28). 
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They also practice reading tables, and decide whether the relation between two variables, x and y, 
adheres to y/x = k, (x ≠ 0) or to x·y = k, see Figures 10 and 11: 

 
Figure 10: Exercises in reading tables (Tofteberg et. al. 2017, 28). 

 
Figure 11: Quantities in inverse proportions (Tofteberg et al. 2017, 41).  

Discussion 
The question if Arithmetica Islandica was a translation or an adapted extract of Arithmetica Danica 
can be answered negatively. We see that the structures of the works are similar, but both of them 
also adhere to a pattern of arithmetic textbooks that had been developed since the early modern age. 
No examples are the same, not one, and even the phrases about the usefulness and superiority of the 
Rule of Three, the Golden Rule, are general and can be found in so many books that they cannot be 
claimed to be related. However, the author of Arithmetica Islandica, who most likely was a scholar 
that graduated from one of the two cathedral schools, must have had access to foreign books and a 
knowledgeable teacher, who actually was available in the northern Hólar Cathedral School. We 
may conjecture that he knew Arithmetica Danica and wanted Icelanders to have a similar work.  
Neither can we confirm that the Reverend Magnús Einarsson (1675–1728) wrote Arithmetica 
Islandica. But having been a student of the young scholar Jón Árnason, later Bishop Árnason 
(1665–1743), makes it quite likely that he had acquired knowledge to complete such a work. In 
1716, Einarsson was in his early forties and could have had time to collect examples from his 
experience and from books that he may have seen or possessed. In the thinly populated country, 
there are not many candidates for such an enterprise. Another candidate is the Bishop himself. The 
facts that weigh against him are that his works are well documented and available in archives. 
Besides he had more possibilities than others to have his works printed, at least in Copenhagen. The 
third candidate is named Magnús Arason Thorkelin ( –1728), titled a sea captain. He served with 
the mathematician Ole Römer in Copenhagen and later in the Danish army on geodesy. He lived 
abroad for 16 years, spoke a number of European languages, and returned to Iceland first in 1721 
(Ólason 1950), after the assumed date of the original manuscript of Arithmetica Islandica of 1716. 
He may, however, rather have been the author of Arithmetica – That is reckoning Art of 1721, 
contained in manuscript ÍB 217 4to, which does not refer to Icelandic environment (Bjarnadóttir 
2011). Einarsson is therefore the most promising known candidate for authoring Arithmetica 
Islandica. 
The Rule of Three, the Golden Rule, has been useful through the centuries, especially in trade. 
Proportional reasoning is still important, for example in the task of converting from one currency to 
another. The methods practiced are more debatable. The old versions of arguments supporting 
methods for solving direct proportionality or inverse proportionality, can also apply to other kinds 
of functions, such as quadratic functions or affine functions and are therefore insufficient and 
confusing. The unit-rate method, used by Gíslason (1962) and emphasized by Keranto (1994) was 
an effort to improve the Rule of Three and is still in use where applicable. 
The context is also important. Many generations have planned works such as digging ditches even 
if few workers and still fewer teenagers are occupied with that kind of work anymore. The contexts 
in examples on proportionality have only lately approached the environment of contemporary 
youth, such as enlarging pictures, or planning activities and sharing cost. New topics, such as 
statistics and probability, have brought opportunities and needs for applying proportional reasoning.    
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Presently, other kinds of functions than proportionality appear frequently. The difficulty is to decide 
if proportional reasoning is applicable or not. Referring to the research of De Bock et al. (2015), 
students tend to confuse situations with different kinds of representations of proportional, inverse 
proportional, and affine functions, and the representational mode has an impact on this confusion. 
In a mathematical modelling context, graphical representations were helpful in most cases to detect 
the model underlying a realistic situation, while for mutually connecting representations, tabular 
representations providing concrete function values, proved to be most supportive.  
We see that Skali, as a representative for contemporary textbooks for teenagers, has adhered to 
trends that are discussed by De Bock et al. (2015) in considering that representation is important, 
such as practice in tabular representation, and practice in distinguishing between the various types 
of increasing and decreasing functions. Skali also offers a variety of contexts that concern 
contemporary teenagers. The presently available versatile representations – verbal, tabular, 
algebraic, geometrical and graphical – hopefully will serve as aids in reducing the number of 
pitfalls meeting students. 
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RUSSIAN POST-REVOLUTIONARY MATHEMATICS 
TEXTBOOKS: A SHORT-LIVED HISTORY 

ALEXANDER KARP  
Abstract 
This study is devoted to Russian mathematics textbooks during the years 1918-1931. The period 
under examination was a time of reforms, when old schools with all their methodological riches 
were rejected (at least, in declarations), and educators were tasked with teaching in a new way, by 
fostering and developing students’ independence. Old textbooks, and to a certain extent textbooks in 
general, turned out to be discordant with the new demands (again, at least in declarations), and new 
textbooks had to be prepared. The present study examines some of them: some were new versions of 
textbooks that had already been prepared before the revolution; others were written only after the 
revolution. The ideas that guided their authors were (and remain) popular outside of Russia as well, 
for which reason the history described here is of general interest. 
Introduction 
This paper is devoted to Russian textbooks from 1918-1931 and constitutes a continuation of 
studies by Karp, 2009, 2010, 2012, which focused mainly on what occurred during these years in 
mathematics education as a whole, without analyzing specific textbooks. 
After the revolution of 1917, an attempt was made to establish a new socialist school, which 
rejected the traditions of drill and rote memorization, characteristic of the old pre-revolutionary 
approach. The theoretically “new” approach was in fact a strange blend of American progressive 
education; ideas developed by the international reform movement, which arose from the 
International Commission on Mathematics Instruction; certain traditions of Russian 
pre-revolutionary democratic pedagogy; and Soviet phraseology, often in a rather primitive form. In 
the early 1930s, schools were redirected toward the old ways, and all of these experiments were 
rejected as left-wing perversions, and their authors were denounced as schemers (Karp, 2010). 
Surviving textbooks from this brief period of reforms are of considerable interest, if only as records 
of an attempt at a new approach to the problem of educational literature. Although many ideas 
promoted in Russia at that time were also popular in other countries, and frequently had even come 
to Russia from abroad, nowhere, probably, did they triumph as much as they did in Russia. For all 
the popularity of the laboratory method or the Dalton Plan during the first third of the twentieth 
century in other countries, it is impossible to imagine state-organized meetings at which teachers 
would be urged to teach in such a way and no other, which was quite an ordinary occurrence in the 
USSR. For a little over a decade, the power of the centralized totalitarian state was aimed at 
implementing the tenets of progressive education, which had been formulated under entirely 
different conditions.1   
Young Soviet pedagogy saw a need to fight against teacher-centered education (although it used 
different terminology). It encouraged independent work by students (the Dalton Plan consisted 
precisely in giving a leading role to such work); insisted on maintaining a constant connection with 
the real world, which was to be studied in the school-laboratory through various types of 

                                                                            
1 It is noteworthy that the founders of American liberal pedagogy initially had a very positive attitude toward 
what was taking place in the USSR. Counts’s (1930) account is representative: it follows the author as he 
travels around the country and, though admitting certain problems, nonetheless mainly points out notable 
achievements. 
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measurements and experiments (the laboratory method); opposed the study of separate subjects and, 
instead, promoted “complexes,” that is, the study of a given phenomenon from different sides, with 
a view to combining knowledge from different fields (sometimes, although far less frequently, such 
a system was also called the “accord system”) (Karp, 2010, 2012). 
Many of these ideas and approaches have remained popular to this day. In a certain sense, it is these 
ideas that should today be considered traditional for the United States, although this word is usually 
used with reference to a completely different kind of pedagogy (Klein, 2007). Beginning in 1931, 
the resolutions of the Central Committee of the Communist Party seemingly exterminated these 
ideas in the USSR; but in recent times they have started to come back, for which reason the 
assessment of what took place in the 1920s, too, began to change from an unequivocally negative 
one to a more cautious one. 
It should be noted that, despite the whole force of the state apparatus and its educational agencies 
(first and foremost, the so-called GUS – Gosudarstvennyi Uchenyi Sovet – the State Academic 
Council of the Ministry of Education – People’s Commissariat for Education, which developed and 
approved educational programs), the leadership was not able to achieve everything that it desired. 
“Complexes” may have been implemented in one way or another in elementary schools – so-called 
stage-one schools – but subsequently, in stage-two schools for older students, their implementation 
proved far more problematic. Teaching a serious course in mathematics (and the course was quite 
intensive and substantive in its design) as part of a complex with something else turned out to be 
unfeasible (Karp, 2010, 2012). 
The Russian fate of ideas that have remained influential in the world by now for at least a century is 
undoubtedly worthy of study; and it is important to examine both what was sought and what proved 
feasible. Textbooks offer a certain (although, of course, not a complete) opportunity to form a 
picture of both the former and the latter. 
On Educational Literature 
Initially, after 1917, Narkompros  (Ministry of Education) officials believed that textbooks should 
be eliminated from schools altogether (Glushkov, 1951); but things turned out differently in reality. 
Vol’berg (1918), a leading figure in the reform of mathematics education during its first phase, 
commented ironically that, after humoring themselves with talk of new schools based on 
“individual initiative, creativity, and labor” (p. 35), teachers were forced to resort to the old, 
pre-Revolutionary textbooks in their teaching. Analyzing records pertaining to the publication of 
educational literature in mathematics during the years 1917-1920, Glushkov (1951) pointed out 
that, for economic reasons, much less literature in general was published than had been done 
previously, but that, no less significantly, the amount of new literature that appeared was negligible. 
Naturally, some books (above all, new problem books in arithmetic) did get published, and over the 
years (looking beyond 1920) their numbers grew. Nonetheless, opening a survey of educational 
literature in any pedagogical journal in those years, we will see names that had already appeared 
before the Revolution. For example, in the “Criticism and Bibliography” section of the “Siberian 
Pedagogical Journal” for 1925, we see works by Shokhor-Trotsky and Goldenberg, Arzhennikov 
and Volkovsky, all repeatedly republished before the Revolution – although alongside of them, for 
example, we also find the post-Revolutionary “Problem Book in Arithmetic on a Basis of Social 
Sciences for Stage-One Schools” by Lankov (Gurinovich, 1925). 
Furthermore, if for stage-one schools the number of new collections of problems, so-called 
workbooks or works on the methodology of teaching in labor schools was not that small (and to 
repeat, systematic textbooks, in principle, went against the reigning tendency), then things were 
worse in this respect with stage-two schools. Tamarin (1930) not without irony quotes an RSFSR 
State Publishing House advertisement, which appeared in May 1930 in Pravda, the country’s 
leading newspaper: the advertisement listed 12 books in mathematics, almost all of them by 
respected, pre-Revolutionary authors – Kiselev, Rybkin, Shaposhnikov, and Val’tsev, Rashevsky. 
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“You are surprised, reader?” Tamarin asks, ironically suggesting that “this reviewer is being 
deceitful, reproducing an advertisement that was probably written 15 years ago.” Later, however, he 
explains that the aforementioned books were advertised not as textbooks for stage-two schools, but 
only as a list of preparation manuals for colleges and technical colleges. But, as Tamarin also notes, 
the main consumers of these books were stage-two schools. 
Consequently, one can identify two questions for historical research, which are still a long way 
from being answered (and which, naturally, cannot be answered fully within the bounds of this 
short article): how did pre-Revolutionary textbooks change in later editions, and which new 
instruction books did in fact appear after the Revolution? With respect to the first question, the 
same Tamarin wrote as follows: 

The textbook has been preserved in all of its former inviolability. My mistake: some books have 
been subjected to a decisive “rejuvenation” procedure. For example, in the “Collection of 
Problems in Algebra” by Shaposhnikov and Val’tsev, the word “merchant” has everywhere been 
replaced by the word “cooperative,” and “landowner” has been replaced by “state farm.” (p. 108) 

But even such a “rejuvenation” merits attention. As for new books, while it remains unclear to what 
extent they were used in schools, the number of them published in the late 1920s even for stage-two 
schools was relatively substantial. Tamarin himself names a number of problem books and 
workbooks that came out in 1929-1930. Below, we briefly describe some books published during 
the years 1917-1931, without attempting to offer an exhaustive survey of the existing literature, but 
examining texts that we consider sufficiently representative of the given period, since they 
exemplify various approaches that existed at that time.  
“Workbook in Mathematics for the Third Year of Stage-One Schools” by A. M. Voronets 
This book, which came out in 1926, was one of a series of workbooks for different grades published 
by A. M. Voronets. The author notes in the introduction that the sequence of topics in the book 
corresponds to the State Academic Council’s curricula. The book is divided into three parts 
(trimesters). The first of them – the fall trimester – is entirely devoted to the topic “Human being.” 
It includes the following sequence of sections: (1) The Labor of the Worker and the Peasant; (2) 
Skills; (3) Work and Nourishment; (4) Skills; (5) The Growth and Weight of Human being; (6) 
Skills, etc. The winter semester contains the following sections: (13) The October Revolution; (14) 
Skills, Square Measures, and also a number of sections united under the heading “Our City” – (15) 
The Geographic Location of Our City; (16) Meteorological Observations, etc. Finally, the spring 
trimester includes the following sections: (27) Measuring a Kilometer; (28) Territorial Measures; 
(29) The District, etc. There is also an appendix, which contains various puzzles under the heading 
“A Time to Work, A Time to Play.” 
As can be seen, the sections are dissimilar. For example, the section on “The October Revolution” 
begins with a problem: 
The Revolution won an eight-hour work day for workers. Formerly, work in factories took place in 
shifts of not fewer than 10 hours, and usually 12 hours. How many hours of freedom did workers 
acquire every day? How many hours and days would this add up to over the course of a year? (p. 
38) 
This is followed by various word problems with a political content. The next section, “Skills,” 
while containing real world problems about finding the area of a room or a postage stamp, consists 
for the most part of far more purely mathematical assignments. Here, students are given the 
definition of a rectangle, along with a touching warning not to confuse it with a right triangle; they 
are asked to draw perpendicular lines using a ruler and set square; the formula for the area of a 
triangle is discussed (but not proved), etc. In general, this “workbook” is in effect a problem book 
whose content may be studied in ways that are quite different. It is clear, however, that the author 
envisions exercises “outside the complex” devoted to developing students’ skills.  
“Textbook in Geometry” by A. R. Kulisher (1922) 
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A. R. Kulisher was a very active participant in pre-Revolutionary congresses of mathematics 
teachers, where he promoted the idea of introducing a preparatory visual course in geometry. He 
published a textbook for such a course in 1913. Subsequently, this textbook was reissued for use in 
stage-one unified labor schools.  
As the introduction to the first edition explains, the course was intended to span three years or 75 
classroom hours. It included an introduction to the basic plane and spatial figures and the basic 
kinds of configurations of lines and planes (parallelism and perpendicularity), the measurement of 
areas and volumes, and such concepts as symmetry and similarity. The book contains many 
pictures. Its main part contains almost no expository writing: only problems are given. Definitions 
and arguments are given in an appendix, which begins with a specially marked warning to the effect 
that “All of the definitions and arguments provided below are to be studied by the class only after 
they have been discovered by the students themselves through corresponding classroom exercises” 
(p. 103). Examples of problems that appear in the text include the following: “Run your hand along 
the top of the desk at which you are sitting. What shape is this desk top (by feel)?” (p. 13); “Draw 
two parallel planes and three perpendiculars to one of them. Will the extensions of these 
perpendiculars intersect the other plane?” (pp. 48-49); “With respect to which straight lines is an 
ellipse symmetrical?” (p. 88). 
Kulisher notes rather severely that the success of teaching (and teachers using this textbook are left 
with a great deal to think through on their own) “depends on the extent to which basic general 
educational principles are implemented in practice” (p. 10). Glushkov (1951) no less severely 
concludes that “Kulisher fills his textbook with material that is interesting, but too difficult for the 
students” (p. 312). 
 “Mathematics. Workbook for the Sixth Year of School,” general editor E. S. Berezanskaya 
This book went through several editions (quotes below are from the third, 1931). Its introduction 
notes that since “a large part of the sixth-year curriculum in mathematics has a formal character, the 
connection with curricula in other disciplines during this year is, as is known, weak” (p. 3). The 
amount of material in the book is large; it is divided into ten sections: Relative Numbers; Equalities 
and Equations; Parallel Lines; Monomial Expressions; the Relative Positions of a Straight Line and 
a Circle; the Relative Positions of Two Circles; Triangles and Axial Symmetry; Polynomial 
Expressions; Quadrilaterals and Polygons; First-Order Functions; Lines and Angles in the Circle; 
Elementary Land Surveying Assignments. 
As we can see, the course includes both geometric and algebraic material. In style, the textbook is 
noticeably different from, say, Kiselev’s pre-Revolutionary textbook. For example, the section 
“Parallelogram” begins with a problem in which students are asked to draw parallel straight lines 
and to intersect them with another pair of parallel straight lines; they are then told that the 
quadrilateral that has been formed is called a parallelogram; and only after this is a formal 
definition of a parallelogram given. In the next section, a formal proof of the fact that a 
parallelogram is divided into two congruent triangles by either of its diagonals is preceded by the 
suggestion that students cut a parallelogram out of a piece of paper and become convinced of this 
assertion experimentally. And the formal proof itself is composed of questions (“What can be said 
about the triangles...?” “According to which statement on congruence will the triangles be 
congruent...?”), which the students must use to carry out the proof on their own. No complete proof 
is given in the book (pp. 156-157).  
In other words, the textbook to a much greater extent is conceived of not as a collected body of 
knowledge, but as a manual with whose help such knowledge may be established. One can point to 
other differences from pre-Revolutionary textbooks as well. Nonetheless, it is impossible not to 
agree with the already-cited Tamarin (1930), who acknowledged that this book and its continuation 
for the seventh year of schooling are “literate and sound,” but who remarked that “in their novelty 
one senses the old days,” and who complained that in these books “one does not feel the beating of 
the ‘socialist’ pulse, [that] there is no connection with production, no polytechnism” (p. 111). 
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“Concentric Textbook in Algebra” by V. G. Fridman 
This textbook was first published before the Revolution, in 1912. In 1922, it was reissued with 
substantial abridgements, and subsequently it was revised once again, so that, for example, as the 
author explains in the introduction to the 1924 edition, “all problems and exercises which in 
previous editions had been taken from Shaposhnikov and Val’tsev’s problem book and thus were 
abstract in nature have been replaced with real-world problems.” The textbook owes its “real-world 
relevance,” for example, to such problems: 

Determine the number of children (out of 1000) who die before the age of one in the USSR and 
in Norway based on the following information: if the number of children dying in the USSR is 
increased by 8, and the number of those dying in Norway is increased by 3, then the first number 
will be 4 times greater than the second number. If the number for the USSR is decreased by 22, 
and the number for Norway is decreased by 17, then the first number will be 5 times greater than 
the second. (p. 65)2 

 
In essence, this textbook (like the problem just quoted) is rather traditional (at the very least because 
it involves no “complexes,” etc.). Its unusual characteristic consists in the fact that the author 
returns again and again to certain topics (the concentric approach). For example, in the first 
“concentration” (stage), the author examines the concept of the square root and finding the square 
roots of perfect squares; in the second “concentration,” students learn about extracting square roots 
of integers in general; and in the third “concentration,” they are taught to extract square roots of 
fractions (p. 6). The author takes credit for his attention to the concept of functional dependency, for 
the presence of historical commentary in his text, and above all, for the fact that he “tried to 
construct the presentation of the educational material in such a way that examples would precede 
the derivation of rules, serving as the foundation for this very derivation” (p. 7). 
Glushkov (1951) describes this textbook as being one of the most widely used textbooks of the 
1920s, along with the textbooks of Kiselev, Lebedintsev, and Rashesvky (while criticizing it for the 
straightforwardness with which it implements the concentric approach and even for its 
“anti-scientific bias.”) But the textbooks just mentioned were clearly more popular than Fridman’s 
before the Revolution, although their popularity was also not equal (one need only notice the gap of 
many years that passed between the first edition of Fridman’s book, in 1912, and later editions). 
 
“Workbook in Mathematics,” Edited by G. A. Popperek (1924-1925) 
This book came out in three parts, the first of which, as the book indicated, was intended for 5-7 
years of study at labor-based seven-year-schools and for the first year of workers’ faculties 
(educational institutions that prepared individuals typically from working-class backgrounds, 
without a secondary education, for higher educational institutions); the second part was intended for 
the second and third years of workers’ faculties; and finally, the third part contained the study of 
logarithmic and trigonometric functions, as well as basic advanced mathematics, in other words, 
matched the curriculum of institutions of higher learning. The book was apparently oriented first 
and foremost toward workers’ faculties and went through no fewer than 18 editions (the first parts). 
The authors designate their book as a handbook for the study of mathematics based on the Dalton 
Plan and the accord system. The introduction to the first part opens with a statement, printed in 
italics, to the effect that the present book constitutes a “handbook for the laboratory method of 
instruction, in which students work through the material independently” (Popperek, 1924, p.1). The 
authors go on to note: 
However, the laboratory method, which is today universally recognized as the latest and most 
advanced achievement of pedagogical thought, has remained until now a pium desiderium [pious 

                                                                            
2 It must be noted that the presence of a problem that makes it clear that something in the USSR is worse 
than abroad would be unthinkable in Soviet textbooks from a later time. 
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wish] as far as productively applying it on a mass scale is concerned, since adequate educational 
literature for its dissemination and practical application on a mass scale has been lacking (p.1). 
The authors then write that their handbook is not a handbook in arithmetic or algebra, but a 
handbook specifically in mathematics, which fact itself in their view exemplifies a complex-based 
approach, which they also variously extol, but which, in their view, is not promoted by a sufficient 
number of books.  The authors expect that their own book will alleviate these “pressing needs.” 
The book consists of assignments, which are divided into sections. In the sections, we find 
problems (often with solutions), questions, and exercises. The questions are often organized 
sequentially in a way that makes it possible, while answering them, to arrive at certain conclusions. 
The conclusions are explicitly formulated. Sometimes, the word “theorem” also appears. The 
authors’ assertions are broken up into questions, which the students must answer independently. 
The following sections, for example, comprise the sixth chapter, “Regular Polygons” (their 
sequence makes it clear what the authors mean by a “complex-based approach”). 
• A circle circumscribed around a triangle. 
• A circle inscribed in a given triangle. 
• Regular inscribed and circumscribed polygons. 
• Finding the length of the side of an equilateral triangle inscribed in a circle, in terms of   

the radius of this circle. 
• The area of an equilateral triangle. The regular prism and the regular pyramid. 
• Trigonometric functions of 300 and 600 angles. 
• Problem. Inscribe a regular hexagon in a circle and find the length of its side [in terms of the 

radius]. 
• Problem. Inscribe a regular quadrilateral in a circle and find the length of its side in terms of 

the radius. 
• Trigonometric functions of a 450 angle. 
• Theorem. One and only one circle can be inscribed in any regular polygon and a one and 

only one circle can be circumscribed around any regular polygon.  
• The area of a regular polygon. 
• Finding the length of the side of an equilateral triangle circumscribed around a circle, in 

terms of the radius of this circle. 
• Finding аn [the side of an inscribed regular polygon] using trigonometry. 
• Finding bn [the side of a circumscribed regular polygon] using trigonometry. 
• Incomplete quadratic equations (Popperek, 1925) 

It is easy to see that very different sections of school mathematics are indeed represented here. It is 
hardly likely, however, that subject matter that appeared out of nowhere – introduced “by the way,” 
as it were, since it happened to come to mind (the clearest example of this being the regular prism 
and the pyramid) – was assimilated well by the students (it must be remembered, too, that the 
students at workers’ faculties did not come from academic environments). 
Discussion and Conclusion 
None of the examined handbooks outlived the period discussed above. After a series of resolutions 
by the Central Committee, A. P. Kiselev’s pre-revolutionary textbooks, which had become popular 
before the Revolution, came back into the schools. Indeed, even the books discussed above 
reflected pursuits that dated to before the Revolution. This can be felt in the style used by their 
authors: Latin expressions in handbooks for workers’ faculties look somewhat surprising and at 
once reveal a former gymnasium teacher (which G. Popperek had in fact been).  
On the other hand, Popperek and Kulisher and Fridman were all fighters for a transformation of the 
schools; the most active of them was probably A. R. Kulisher, but G. A. Popperek, for example, 
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long before writing the handbook discussed above, had also made presentations at teachers’ 
congresses (see Sinitsky and Popperek, 1906) and on other similar occasions. 
It is easy to see the differences between the textbooks of the 1920s and later ones (or, which is 
almost the same thing, earlier ones). The former indeed required the students to work 
independently. Consequently, these textbooks were structured differently: instead of 
theorems-examples-problems and exercises, they contained questions and problems, out of which 
theoretical knowledge was supposed to grow. At different times, certain wonderful books in 
mathematics (for example, Pólya and Szegő, 1998, to mention just one) have been structured on this 
principle, but just how useful this method proved in mass-scale schools (or workers’ faculties) is 
open to debate. We have no access to any statistics (and likely will never access to any statistics) 
that might tell us what share of students proved capable of studying in this way, or how often 
teachers themselves were forced to explain, in the old-fashioned style, how to answer the assigned 
questions. Judging by the fact that E. Berezanskaya was subsequently (after 1931) one of the most 
active figures in mathematics education, it may be supposed that prior to this, too, she did not rule 
out the possibility of using her book as an ordinary traditional textbook. 
Clearly, the radical version of the complex-based approach (“accordness”), understood as the 
simultaneous study of different subjects, was not applied in the upper grades. The complex-based 
approach that was used in these grades was one that eliminated divisions between mathematical 
subjects. Demonstrating the unity of mathematics is undoubtedly important, but once again, it is not 
obvious to what extent educators took into account the fact that not all students could immediately 
connect different sections and different ideas. 
What appears indisputable is the fact that the books analyzed above contained many interesting 
assignments (for both stage-one and stage-two schools), many of which were in one way or another 
later made use of. Moreover, we have noted earlier (Karp, 2009) that the creators of the Sputnik, 
contrary to what is sometimes thought, attended and graduated from Soviet schools that were not 
those which took shape after 1931, but in fact post-revolutionary schools. Without taking this as 
proof for the high quality of post-revolutionary schools, we might nonetheless ask toward whom in 
reality (and not in political declarations) these schools were oriented and to what extent they proved 
capable of educating the average (rather than the exceptionally gifted) factory worker or peasants’ 
child in mathematics. Likely the only remaining way of investigating this that is available to us is 
by analyzing the recollections of the former students of that period (which the author hopes to 
undertake in the future). 
One last thing that must be mentioned is the politicization of the assignments, which is so 
conspicuous in many of the handbooks, in which even in a class in mathematics a child is 
constantly being told about socialism’s achievements and capitalism’s defects. The politicization of 
assignments during this period was indeed very considerable. Nor did it disappear, of course, in 
later years; but it changed. Changes in its orientation and intensity also deserve to be investigated. 
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DESCRIPTIVE GEOMETRY TEXTBOOKS TRANSMITTED TO 
BRAZIL: HOW THEY WERE RECEIVED AND DIFFUSED 

THIAGO MACIEL DE OLIVEIRA and VINÍCIUS MENDES COUTO PEREIRA 
Abstract  
The article presents how descriptive geometry textbooks were received in Brazil. The historiography 
of this field of study focuses on the Brazilian translation of Gaspard Monge’s book and its use at the 
Royal Military Academy of Rio de Janeiro. Documents that were recently found in public archives 
show the presence of other textbooks, like Silvestre-Françoix Lacroix’s “Descriptive Geometry” as 
well. The article will also address Brazilian textbooks on this subject that were published during the 
19th and 20th centuries by professors at several scientific institutions, including the Brazilian 
translation of the “Éléments de Géométrie Descriptive avec nombreux éxercices par F.I.C”. 
Brazilian publications about descriptive geometry show the reception of new developments on the 
subject developed within the French community. The present article will also highlight Alvaro José 
Rodrigues’ work. He was a former professor at the National School of Fine Arts and he published 
three volumes on descriptive and projective geometry during the first half of the 20th century. 
 
Introduction 
The advance of Napoleon's troops towards the Iberian Peninsula forced the Portuguese royal family 
to escape to Brazil, which was still a colony of Portugal at the time. The Emperor Dom João VI 
settled in Rio de Janeiro in 1808. Saraiva (2007, p. 24) affirms that the war brought unexpectedly 
good consequences with regard to the diffusion of ideas. Among the main acts of the emperor, 
which triggered profound economic and cultural changes in Brazil, was the creation of the Royal 
Military Academy, which began in 1811. “A regular course in the area of exact sciences that had its 
application in military and practical studies, and which explicitly aimed to train more qualified 
officers for the exercise of their profession” was thus established in Rio de Janeiro (Oliveira 2005, 
p.159). 
The professors assigned to teach these subjects at the Academy were strongly encouraged to 
produce a textbook or translate a renowned text on the subject. The texts indicated were “Elements 
of Geometry” by Adrien-Marie Legendre, Sylvester-François Lacroix's “Differential and Integral 
Calculus” and Gaspard Monge's “Elements of Descriptive Geometry”. The texts written by Étienne 
Bézout, Benjamin Robins and the memories of Leonhard Euler were also suggested for use 
(Oliveira 2005, p.175-176). 
Mormêllo (2010) states that descriptive geometry was a novelty for the time, considering the 
educational institutions established in Brazil before 1810. Furthermore, the author explains that 
“descriptive geometry was most certainly introduced into the Royal Military Academy under the 
influence of the École Polytechnique of France”, since the country was a model for Portugal and the 
literature used in Portuguese military education was almost entirely French (Mormêllo, 2010, p.73). 
The first professor of descriptive geometry at the Academy was José Vitorino dos Santos e Sousa, a 
Brazilian lieutenant of the Royal Corps of Engineers that had graduated from the Faculty of 
Mathematics at the University of Coimbra. His translation of Monge’s “Elements of Descriptive 
Geometry” is based on the first edition and was published in 1812 by the newly created Royal 
Press. Vitorino affirms that he produced such a text in order to “contribute to the raising of the 
empire of sciences and the fine arts in a new world, which offers many natural resources for their 
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application in industrial efforts, and furthermore, has the potential to improve the arts” (Sousa 1812, 
p. xix). 
French publications on descriptive geometry: A brief rationale 
For the period from 1812 to 1843, Barbin (2015) has listed the French publications on descriptive 
geometry. For the author, the dissemination of descriptive geometry corresponds to new 
élémentations in relation to Monge’s text. Four important changes were identified. The first one 
concerns preliminary ideas, in which “more and more considerations are introduced to help the 
students to solve problems” (Barbin 2015, p.63). With this in mind, the author highlights the 
approaches of Lacroix (1795) and Hachette (1822). While the former began with the projections of 
straight lines and planes, the latter began with the projections of points and lines. Vallée (1819) and 
Adhémar (1832) proposed a complete decomposition of point, straight line and plane projections. 
The second change brought an end to Monge’s “beautiful lesson in geometry”, since “the 
presentation of descriptive geometry in the rich context of all the figures of space and the inaugural 
problem to motivate the theory were given up.” (Barbin 2015, p.63). The third change concerned 
curved surfaces. While Monge started from the more general and went to the more specific, the 
reverse was in fact adopted. Thus, “the projections of a curve and of its tangent in one plane became 
a new element of descriptive geometry” (Barbin 2015, p. 63). The fourth change was linked to the 
search for tools used to solve problems. The rabattement method was introduced, and it was 
considered to be a concept with the properties of an operation, and not just a practice of presenting 
drawings (Barbin 2015, p. 63). Barbin (2015) shows that Olivier’s text from 1843 introduced a new 
élémentation: a change in the projection plane method. Olivier introduced, in chapter II of his Cours 
de géométrie descriptive, the idea of overcoming difficulties in solving problems from the proper 
choice of a new projection plan. Barbin (2015, p.67) states that, in order to solve a problem, 

it can be necessary to change the vertical plane in relation to a point, or the horizontal plane, to 
change the planes of projection in relation to a line or to lead a plane in a parallel position to one 
plane of projection. These four changes constituted “fundamental problems”, and 76 of his 80 
problems only concern motions of straight lines or planes. Olivier began to use the word 
“rotation” and its properties from problem 10, which asks to make a plane parallel to the ground 
line. Thus, the “method of changes” implies a new élémentation, with the notion of new 
“elementary” problems, which are the “fundamental problems”, and with transformations of the 
planes of projection. 

Lacroix (1795), upon solving problems regarding straight lines and planes, in fact solved a larger 
set of problems concerning spheres. And this is all before he got into a discussion about the 
generation of surfaces in the second part of his book. His concept, as Barbin (2015) states, was 
based on the construction of a sequence of problems, so that the solution of each one depends on 
the previous. Lacroix introduced the general concept of a surface in a similar way to Monge1, and 
then focused on the study of conical, cylindrical, double-curved, and revolution surfaces in addition 
to the problems of intersections between surfaces. Before talking about the projection of surfaces, 
Vallée (1819) introduced a study about the projections of curves by means of their traces, and the 
projections of tangents to the curves. Vallée gave a general idea regarding Monge’s surfaces, but his 
study was based on particular cases: cylindrical, conical, revolution surfaces and envelopes. 
Adhémar (1832) followed in the same footsteps as Vallée, giving particular attention to the tangent 
theorem (the projection of the tangent to a curve is tangent to the projection of the curve). First the 
author asserted that the preliminary study of the projection of a curve precedes that of the surface 
and then went on to explore cylindrical surfaces, which he considered the most simple and useful. 
Before solving various problems, points, lines and planes are represented at the most remarkable 
positions in Vallée’s text. The author showed, for example, how straight lines, horizontal lines, 
                                                                            
1 It is possible to see different ideas among the French authors who succeeded Monge. Monge (1799) started 
from a general concept of a surface to, later, analysing particular cases. 
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parallel lines and perpendicular lines to the ground line are represented. In the introductory part of 
Lacroix's text, there is a study about the several ways of representing points and lines, as well as the 
theorems related to how these geometric entities are determined. Monge did not explain these 
geometrical entities in their several particular positions. However, in this regard, the author stated 
that “it will be by numerous examples and by the use of the rule and the compass that we will 
acquire the habit of constructions, and that we will accustom ourselves to choose the most simple 
and most elegant methods in each particular case” (Monge 1799, p. 16). 
Descriptive geometry textbooks in the Brazilian context 
During this research, evidence was found that indicates the presence of Lacroix’s descriptive 
geometry text in the Military Academy, despite the fact that the royal letter that created the 
Academy originally indicated Monge’s book. Mormêllo (2010, p. 121) transcribed fragments of a 
written evaluation of books used at the Academy in 1836, which claim that Lacroix’s textbook on 
descriptive geometry is the most difficult of all, and the least appropriate for elementary education. 
Figure 1 shows a fragment of a manuscript that indicates this book for use at the Military Academy 
in 1837. Therefore, we assert that Lacroix's Descriptive Geometry was one of the references for the 
course at the Military Academy and later for the Polytechnic School. 

 
Figure 1: Indicates the use of Lacroix's text in the Descriptive Geometry course at the Military Academy 

(Source: The National Archive of Rio de Janeiro – Codex IG35) 
The first textbook on descriptive geometry was published in Brazil in 1840 was Noções de 
geometria descriptiva para uso da escola de architectos medidores. It was written by a graduate of 
the Academia Pedro d’Alcântara Niemeyer Bellegarde (1807-1864). It was a 27 page booklet and 
no copy of it has yet been found. The literature on this subject in Brazil has certain characteristics 
that must be highlighted. There is a predominance of foreign literature, particularly in the French 
language, at the institutions that offered the discipline during the 19th century. At the end of this 
century and at the beginning of the next, it is possible to find texts on descriptive geometry written 
by Brazilians. The texts were part of the requirements for entering into teaching positions at 
institutions of higher education.  
During the 20th century, there were an even greater number of textbooks written by Brazilian 
authors on descriptive geometry. We note the predominance of an approach that is similar to the 
approach described by Barbin (2015). The élémentations are included in Brazilian textbooks on 
descriptive geometry. The objects are studied from a variety of particular positions and the methods 
of rabattement, rotations and changes of planes, are shown as basic skills that should be learned by 
the students. In addition, surfaces are also studied from several particular cases, according to the 
classification given by Monge. In the Brazilian texts on descriptive geometry, we find whole 
chapters dealing with rabattements and rotations, which show that these themes are considered to 
be basic abilities, which should be developed by students in Brazil. 
At the end of the 19th century and at the beginning of the 20th century, the book Éléments de 
Géométrie Descriptive avec nombreux éxercices par F.I.C.2 was one of the texts of reference for the 

                                                                            
2 This book was part of the French collection named Cours de Mathématiques élémentaires and included 
elementary books on arithmetic, algebra, geometry, trigonometry and descriptive geometry. The collection 
belonged to the Institut des Fréres des Ecoles chrétiennes. F.I.C. are the initials of Frere Ignace Chaput. 
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descriptive geometry course at the Polytechnic School of Rio de Janeiro3 and other institutions, 
such as the Colégio Pedro II. The books that composed this French collection were translated and 
adapted to Portuguese by Eugenio de Barros Raja Gabaglia, a former director of the National 
Gymnasium (the name of the Colégio Pedro II at the end of the 19th century) and a professor of the 
Polytechnic School of Rio de Janeiro (Lorenz & Vechia 2004). The syllabuses of the subjects at the 
National Gymnasium in 1898 introduced advanced studies in mathematics, included descriptive 
geometry as a course (Lorenz & Vechia 2004) and indicated the use of F.I.C.’s text. 
With the introduction of F.I.C.’s text, we find preliminary concepts and solutions regarding several 
problems involving points, lines and planes. This study was done by means of a few particular 
cases, such as the élémentations found in Adhémar's text. Later on, several descriptive methods 
were discussed in F.I.C.’s text, such as the change of projection planes, rotations and rabattements. 
There is also the study of problems involving angles and applications in the representation of plane 
figures, the representation of polyhedra, the plane sections of polyhedra and the intersection of a 
line and a polyhedron. In the second part of F.I.C., the surfaces and their classification are studied, 
as well as the tangential planes, the representation of the cylindrical surface, cones and surfaces of 
revolution. We also find the representation of tangential planes in relation to cylinders, cones, 
spheres and a surface of revolution, plane sections of cylinder, cones and surfaces of revolution, 
intersections between polyhedra, polyhedra and curved surfaces, surfaces generated by straight lines 
and surfaces of revolution. In the third part, the quoted plans are presented and, in the fourth part, 
the study of shadows and perspective is introduced. 

 
Figure 2: Covers of Éléments de Géométrie Descriptive avec nombreux éxercices par F.I.C. and its 

Portuguese translation 
The Brazilian edition of F.I.C.’s text includes terms that are not found in the original French text. 
These terms are used nowadays in Brazilian textbooks on descriptive geometry, such as reta de 
frente (straight line parallel to the vertical projection plane), reta de topo (straight line perpendicular 
to the vertical plane), reta de perfil (straight line situated in a plane parallel to the projection 
planes), plano de topo (plane perpendicular to the vertical plane), reta de maior declive de um plano 
(straight line whose horizontal projection is perpendicular to the horizontal trace or the plane trace). 

                                                                            
3 Authors also mention that textbooks like C. F. A. Leroy’s Traité de géométrie descriptive and A. Javary’s 
Traité de géométrie descriptive were used at the Polytechnic School of Rio de Janeiro. 
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This can be seen as an adaptation made for didactic purposes. It aimed to help students understand 
concepts of the subject by means of an analysis of several particular cases. 
After 1920, there were more textbooks on descriptive geometry written by Brazilians. Carlos 
Süssekind, a professor at the Naval Academy and at the Military School of Rio de Janeiro, wrote 
the book Geometria Descritiva, which was published in 1924. The book was written based on his 
lectures at the Naval Academy, and the author included the study of perspective, shadows and the 
design of projections. It addresses problem solving and descriptive methods, without further 
justifications from a geometric point of view. The next section focuses on a Brazilian professor that 
published noteworthy work on descriptive geometry. 
Alvaro Rodrigues’ work on descriptive geometry 
Alvaro José Rodrigues4  (1882 - 1966) was a Brazilian civil engineer who graduated from the 
Polytechnic School of Rio de Janeiro. He was also a professor at the School of Fine Arts and taught 
descriptive geometry for 35 years. During 1909 and 1910, he had the opportunity to live in Berlin 
as a member of a commission created by the government to establish commercial relationships 
between Brazil and European countries. In his own words5 

It was by evaluating the work of the German people that I was able to evaluate the power of 
technical education and professional improvement, and deem them as major factors for the 
greatness of that Nation! 

Well, it was at these professional schools, the cornerstones of the entire German educational 
system, that Descriptive Geometry came into my spirit! The role this subject played in teaching 
drawing abilities in these schools excited me, giving real existence to the dreams, to the 
cogitations of artists and engineers, inventors and entrepreneurs of works of any kind, for their 
transformations into drawing projects (transl. by Th. O.). 

His work included two volumes about descriptive geometry and a book on parallel perspective. 
These texts are extremely important in the Brazilian context of publications on descriptive geometry 
because the author presented not only the constructive methods but also the historical references for 
its development. In Rodrigues’s work, history and theory are presented and articulated in such a 
way that reveals that the author had profound knowledge on the subject. 
The first volume, entitled Geometria Descritiva - Operações Fundamentais e Poliedros, was a 
reproduction of his classes given in the first year of the painting, sculpture and engraving course 
and in the first year of the training course for drawing teachers at the National School of Fine Arts 
in Rio de Janeiro. The first edition is from 1941 and presented the subject following a similar 
structure to books like F.I.C., starting from the representation of points, lines and planes. The 
volume also presented the study of polyhedra representation, as well as the resolution of the 
problems of intersection between these solids. Finally, it deals with other methods for representing 
three-dimensional objects. Rodrigues based himself for this on a broad spectrum of historical 
authors, from Brook Taylor (1749), B. E. Cousinery (1828), C. L. Bergery (1835) to Wilhelm 
Fiedler (1871). 
Although he had read Monge’s original text, Rodrigues was also influenced by authors of different 
nationalities. In opposition to the spirit of generality present in Monge’s lessons, which begins with 
more complex figures, authors like F.I.C., Vallée, and Adhémar started from the simplest figures 
                                                                            
4 More details on Rodrigues’ life and work can be found in Oliveira (2016). 
5 “Foi avaliando o trabalho do povo alemão que avaliei o poder da educação técnica e do aperfeiçoamento 
profissional, como fatôres principais da grandeza dessa Nação! Pois bem, foi nessas escolas profissionais, 
pedra angular de todo o sistema educacional alemão, então vigente, que a Geometria Descritiva, surgiu em 
meu espírito! Empolgou-me daí por diante, pelo papel que nessas escolas desempenhava na educação da 
faculdade gráfica, dando existência real aos sonhos, às cogitações de artistas e engenheiros, inventores e 
empreendedores de obras de qualquer natureza, pelas suas transformações em projetos gráficos.” (Bello 
Junior 1966, p.172) 
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and went to more general cases and complex figures. In Rodrigues' work, it is possible to identify 
that study should be done by analyzing many particular cases, so that the fundamental elements are 
presented in various positions in space. Rabattements and rotations are descriptive methods that are 
widely used in the work and are studied through the approach that goes from the particular to the 
general. However, Rodrigues expands the repertoire of constructive techniques by including 
methods like central projections, based on Taylor’s work on linear perspective. 
The second volume was called Geometria Descritiva - Curvas e Superfícies. From the second 
edition on, the title changed to Geometria Descritiva – Projetividades, Curvas e Superfícies, since it 
contains an introductory chapter dedicated to projective geometry. The author includes concepts 
from Poncelet’s Traité de propriétés projective des figures. The fact that Rodrigues included a 
chapter on projective geometry in a book dealing with descriptive geometry makes his work very 
singular and distinguishes him from other authors. Projective geometry has become an autonomous 
field of mathematics, as it distances itself from the questions connected to projections and sections 
of figures, from where it originated. In bringing projective geometry to his descriptive geometry 
text, Alvaro Rodrigues saw these themes intertwined through their history and from the original 
texts of their founders. Another Brazilian text that adopts such an historical approach to articulate 
connections between projective geometry and descriptive geometry is unknown. Lietzmann (1924), 
in his Methodik des mathematischen Unterrichts, shows that this connection between projective 
geometry and descriptive geometry was a characteristic of German secondary education of the early 
twentieth century. Thus, Alvaro Rodrigues’ experience in Berlin in 1909 and 1910 may have 
brought him into contact with this concept to include in the teaching of the subject. 
Conclusion 
The present article presents some characteristics of Brazilian textbooks on Descriptive Geometry. 
The reception and diffusion of the subject in Brazil started with the translation of Gaspard Monge’s 
book. Other books in the field influenced the development of the subject in scientific institutions in 
Brazil. There was a predominance of foreign literature, particularly in the French language at the 
institutions that offered a descriptive geometry course during the 19th century. A specific kind of 
text led Brazilian authors to produce literature on the subject, including the previously mentioned 
texts, which were written as part of the requirements for the assessment process for teaching 
positions in institutions of higher education. In the 20th century, several Brazilian textbooks 
appeared and were widely used in institutions of higher education. These texts are structured 
according to the élémentations presented by Barbin (2015). 
In the context of Brazilian textbooks, Alvaro Rodrigues’ work is unique because of the historical 
approach he presents. The evolution of his work in new editions shows that he was dedicated to the 
study of descriptive geometry and he expanded the content of his work as he increased his cultural 
repertoire about the subject. The historical notes on Rodrigues’ work do not contain only names and 
dates, they present fragments taken from original sources and create a text that interweaves content 
with history. 
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A STUDY ABOUT TRANSMISSIONS OF CALCULUS 
TEXTBOOKS TO BRAZIL  

VINICIUS MENDES COUTO PEREIRA  
Abstract 
The present study related to the research of analysing how the Brazilian mathematical community 
became established. In this sense, I have studied how the process of transmitting the basic concepts 
of calculus occurred, analysing which conceptions of analysis, prevailing in one of the metropolis 
countries were transmitted to Brazil and how the transmitted knowledge was transformed and 
reworked in order to constitute a proper production. In this intention I have investigated the process 
of transmission of calculus textbooks to Brazil starting with the “Traité Eléméntaire de Calcul 
différentiel et de Calcul intégral” (1802), by Sylvestre-François Lacroix already translated into 
Portuguese as Tratado Elementar de Calculo Differencial e de Cálculo Integral, the first calculus 
textbook used in Brazil, from 1812, and the version published in 1842 by José Saturnino da Costa 
Pereira, Elementos de Calculo Differencial e de Calculo Integral, segundo o sistema de Lacroix, 
being the first work of proper production in Brazil. In the following decades, one continued, 
however, to transmit foreign textbooks, mainly French ones, so that for a long time the work of 
Saturnino remained the only calculus textbook being an own production in Brazil.  
In this way I have identified the main characteristics of the calculus textbooks transmitted to Brazil, 
as well as the different generations transmitted, in the sense established by Zerner (1994).  
I intend to present a study of various aspects of calculus textbooks transmitted, comprising the 
period from 1810 – the year of founding the first institution of higher education - to 1934, the year in 
which the Italian mathematical school arrived at the Universidade de São Paulo, as well as to 
reveal, which were the relevant proper productions in analysis.  
Research Questions 
This study is situated in the search for the understanding how the Brazilian mathematical 
community was constructed. Thus, the process of the emergence of a mathematical community in a 
country that initially occupied a peripheral position implies a change in the focus from teaching to 
research – that is from the use of textbooks imported from a metropolis until the moment in which 
proper productions were achieved. 
On the other hand, considering the inexistence of longitudinal studies about this theme and the 
impossibility of studying all the mathematics produced during an extended period, I have decided to 
investigate the evolution and establishment of concepts related to Analysis in Brazil as a key theory 
in the nineteenth century. I will search which conceptions of analysis were transmitted to Brazil and 
how the transmitted knowledge was transformed and reworked in order to constitute a proper 
production. 
In this way, I have done a specialised research on a well-defined conceptual field in mathematics 
and a longitudinal study, i.e.: the establishment of a Brazilian mathematical community with its 
own production. Thus I have a specific question: How the process of transmission of the basic 
concepts of calculus was implemented in Brazil. Therefore I should to point out the importance of 
studying the use of textbooks transmitted from a metropolis until the moment in which own 
productions were achieved. 
Finally, I have the main motivation for the establishment of the present study, the investigation of 
the process of transmission of calculus textbooks to Brazil. 
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Beginning of the Transmission Process of Calculus Textbooks to Brasil 
When the Portuguese royal family came to Brazil in 1808, it was necessary to implement minimal 
infrastructure conditions to house in Rio de Janeiro a contingent of approximately 15,000 people, as 
well as adjusting it to the new status of capital of the Portuguese Empire. At that time the first 
institutions of higher education founded by the Portuguese in Colonial Brazil emerged directly 
linked to the military activities resulting from the Portuguese occupation. Particularly I should point 
out the creation of the Academia Real Militar in 1810.  
The textbooks that were to be used for teaching the various disciplines were determined by a royal 
decree. The textbook Traité Elementaire du Calcul Differentiel et Integral de S.F Lacroix was 
indicated as a compendium for teaching calculus. Although I do not know for sure how long 
Lacroix’s textbook was used at the Academia Real Militar, we know that its use lasted until at least 
1837, according to a document located in the Arquivo Nacional do Rio de Janeiro. 

 
Figure 1: List of textbooks used in the Academia Real Militar in 1837 

   
Figure 2: Lacroix and Saturnino’s textbooks. 

In 1842, the textbook Traité Elementaire du Calcul Differentiel et Integral was published by José 
Saturnino da Costa Pereira, professor at the Academy. Thus I can consider that Saturnino textbook 
was the first own production of calculus textbooks in Brasil. 
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On the other hand, besides the textbooks by Lacroix and Saturnino, I know of no other textbooks, 
which would have been used in the Academia Real Militar and its later, transformed institutions. 
Thus, traditionally the historiography of mathematics in Brazil considers the translation of 
Lacroix’s textbook and the version produced by Saturnino as practically the only two references for 
the teaching of Calculus for several decades during the nineteenth century. 
Since there seems to be only two known Calculus textbooks in most of the nineteenth century there 
arose the question: How can one study the process of reception and transmission of the concepts of 
Calculus with only two known textbooks? 
Basically, I take two approaches in dealing with this issue. On the one hand, I look for sources that 
could give us indications of other textbooks used for teaching calculus in Brazil. On the other hand, 
I have used a methodology to search these works in several libraries and institutions, considering as 
a basic hypothesis that a listing (and later analysis) of these works with their respective locations, 
would document part of the process of reception and transmission of the basic concepts of calculus 
in Brazil. 
In this way, I found three textbooks that I consider as "accumulation points", namely Traité 
Élémentaire de Calcul Différentiel et de Calcul Intégral de S.F. Lacroix, Cours d’Analyse de 
l’École Polytechnique de Charles Sturm and Élémens de Calcul Différentiel et de Calcul Intégral de 
Boucharlat. In his study of French treatises, Zerner (1994) seeks to understand how the French 
treatises relate to the process of establishing rigorous standards in analysis throughout the 19th 
century, revealing a distinction between three generations. 
The first generation is composed of two treatises published in the early nineteenth century, Lacroix 
(1802) and Boucharlat (1813). It should be noted that these two textbooks experienced a large 
number of editions, nine each one. The treatises of the first generation do not directly use the 
infinitely small, with rare exceptions, besides not using continuous functions. Regarding the 
concept of differentiability, these ones only speak about differential coefficients. According to 
Zerner, the word "derivative" was proposed by Lagrange, not having reached those works in time.  
Sturm’s textbook is classified as belonging to the second generation of the treatises characterised by 
the so-called " principle of substitution of infinitesimals", ruled by the following definition:  

“Two infinitely small quantities a and b can be substituted for each other and their difference can 
be neglected either for the limit of a ratio or for a limit of a sum, provided that this difference is 
infinitely small compared to one of them.1” (Zerner 1994, p. 9) 

 In general, second generation textbooks define the notion of continuous function by restricting the 
property of the intermediate value. 
At this point, I should pint out the reflexions by Schubring (2005) regarding the criticism of the 
principle of substitution of infinitesimals by the Belgian mathematician Paul Mansion, who has 
detected inconsistencies in the use of the principle presenting “examples of false application of the 
principle”. Mansion concludes that the condition of the principle is just sufficient, not being a 
necessary condition. It is thus perceived that the principle remains correct only if all limit processes 
are conducted simultaneously. Therefore, it is evident that the principle of substitution, widely used 
in works belonging to the second generation, presents inconsistencies not being valid in general. 
Thus, at least until the first half of the nineteenth century one has in Brazil the broad use of the 
Lacroix textbook and the Saturnino version, with indications of influences of authors like Sturm 
and Boucharlat. 

                                                                            
1 Deux infiniment petits a et b peuvent être substitués l'un à autre et l'on peut négliger leur différence soit 
dans la recherche d'une limite de rapport, soit dans celle d'une limite de somme, pourvu que cette différence 
soit infiniment petite par rapport à l'un d'eux. 
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Positivism 
Positivism was a philosophical system created by the French philosopher Auguste Comte 
(1798-1857).  The positivists believed that this positive philosophy was the only basis for the 
development of the specialised sciences and the reorganisation of the society.  
The influence of positivism on mathematics at the Escola Central and the Escola Politécnica do Rio 
de Janeiro was evidenced not only by various quotations of Auguste Comte in doctoral 
dissertations presented after 1848, but also by the production of mathematics textbooks.  
The textbook Notas sobre o emprego do infinito written by Américo Monteiro de Barros, published 
in 1863, strongly criticised the use of infinity in the teaching of elementary mathematics stating that 
its use causes serious inconveniences. In this sense, Barros attacked the influence of the French 
textbooks on teaching mathematics in Brazil, which emphasised the use of infinity. Barros also 
adopted a polemical position about the use of infinitesimals, stating that for these notions are given 
a reality that cannot exist, grounding all science on a fragile basis. Thus, Barros’ textbook 
documents a position of strong rejection not only with respect to the use of the concept of infinity, 
but also of infinitely small quantities. 
The textbook Theoria Elementar das Funcções para servir de introdução ao estudo da álgebra”, 
published in 1885 by Licinio Athanasio Cardoso was intended to serve as a guide for students about 
the concept of derivative presenting also a study about functions. In addition to presenting an 
explicit positivist influence, the work presents a peculiar approach about the concept of derivative 
based in a notion called principal state2. 
 The notion of the principal state of an expression is initiated from the indetermination expressed by 
. In this way, the unity is initially defined as the main value of , i.e., when the symbol results from 

the cancellation of two identical quantities. In this line of reasoning, unity is seen as the main value 
among the infinity of values represented by . 

Then the principal state of the product of any quantity by  (from the annulment of two identical 

quantities) is defined as the quantity itself, since  can be replaced by 1. Thus, the main state of  

 is A. 

Cardoso argued that the expression given by  is constantly equal to  for all values  

becoming an indeterminate expression when  being its main state . In this way the principal 
state of an expression is defined when the variable is equal to  by means of the notation . It then 
follows, according to the notation, that: 

 
The derivative concept conceived by Cardoso is based entirely on the notion of the principal state of 
a given expression. Thus considering that in all continuous functions either  or  tend 
simultaneously to zero, he defines the derivative of a function as the principal state of 

 when the increment Δx becomes zero.  

 
I should point out the Cardoso’s conception to avoid both the infinitely small approach and the limit 
method and even Lagrange’s algebraising approach. Thus Cardoso adopts a completely alternative 
approach based on the works of  "Mr. Fleury"3, based on the concept of principal state, alleging that 

                                                                            
2 Estado principal in the original. 
3 Mr Fleury was P. Henry Fleury. He wrote the textbook “Le Calcul Infinitésimal fondé sur des principles 
rationnels et précédée de la Théorie Mathématique de l’infinit (1879)” 
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this way of considering the derivative makes its notion clearer and its existence more 
comprehensible. (Cardoso 1885, p. 66) 
Calculus textbooks at the Escola Politécnica de São Paulo 
The Escola Politécnica de São Paulo was the third engineering school founded in Brazil in 1893, 
continuing a long tradition of mathematics with the function of forming engineers in Brazil. The 
textbook adopted for teaching calculus at the Polytechnic School of São Paulo was Premiers 
éléments de calcul infinitesimal à l’usage dês jeunes gens qui se destinent à la carrière d’ingénieur 
(1884) by Hippolyte Sonnet (1800-1879), having had eight editions in France.  
In the classic study by Zerner (1994), Sonnet’s treatise is classified as belonging to the second 
generation of French treatises, characterized by the use of the principle of substituting the infinitely 
small. However, it proved that the textbook in question had characteristics similar to the works of 
the so-called first generation of treatises, whose authors are Lacroix (1802) and Boucharlat (1813), 
more specifically I am classifying Sonnet’s treatise as a second generation archaism, i.e., a treatise 
belonging to the second generation but also related to the textbooks of the first generation. 
Sonnet makes clear in his preface that he was directly influenced by the reading of the works 
written by Lacroix, Cournot, Duhamel and Serret. At this point, Zerner stresses the existence of 
factors in Sonnet's textbooks, which in comparison with other works did not present the same 
actuality regarding the approach of certain mathematical concepts: 

“I insist about one point: for there to be archaism, it is not enough that the scientific context of 
the book is outdated, it is also necessary that there are other books much more up to date on the 
same contents4.” (Zerner 1994, p.10) 

Zerner also emphasizes Sonnet's intention to synthesise in a single work all the calculus knowledge 
necessary for the future engineer: 

“A brief preface indicates the purpose of this textbook: to bring together in a textbook of modest 
size (Sonnet uses the word « opuscule »)  the parts of the calculus infinitesimal necessary for the 
future engineer.5 ” (Zerner 1994, p.70-71) 

The principle of the substitution of infinitely small quantities is neither enunciated nor effectively 
used by Sonnet, but the notions concerning infinitely small quantities are made explicit. I should 
note here that the definition of infinitely small quantity is exactly the one prominent in the treatises 
of the second generation. “The textbooks of the second generation include a definition of infinitely 
small as having zero for limit.6” (Zerner 1994, p.13) 
On the other hand, I should remember that, as emphasised by Zerner (1994), continuous functions 
were only defined, but there were not subsequently applied and no other propositions are 
established with them. At this point let us remember that, as treatises of the first generation, Lacroix 
(1802) and Boucharlat (1813) did not introduce continuous functions whereas Sonnet merely 
enunciates it. “Collignon and Pauly do not talk about continuous functions, Sonnet and Hagg only 
define them.7” (Zerner 1994, p.13) 
In terms of the notion of limit, it should be pointed out that although the notion is used throughout 
the work, there is no formal definition of the limit nor are there any proofs using it. Thus, one 
should remember that Lacroix's textbook also does not present a formal definition for the limit 
concept. In this way, one remarks another component that brings Sonnet closer to the works of the 
                                                                            
4 J'insiste sur un point: pour qu'il y ait archaïsme, il ne suffit pas que le contenu scientifique du livre soit 
dépassé, il faut aussi qu'il existe sur le marché d'autres livres beaucoup plus à jour portant sur le même 
contenu. 
5 Une brève préface indique le but de l’ouvrage: réunir dans un ouvrage de dimension modeste (Sonnet 
emploie le mot « opuscule ») les parties du calcul infinitésimal nécessaires au futur ingénieur. 
6 Les ouvrages de la deuxième génération comportent une définition des infiniment petits comme quantités 
ayant zéro pour limite. 
7 Collignon et Pauly ne parlent pas de fonctions continues, Sonnet et Haag les définissent, sans plus. 



 Transmissions of Calculus Textbooks to Brazil 

 261 

first generation. Perhaps it is exactly this point that brings it closer to the works of the first 
generation, or more specifically, as a second species archaism. 
Textbooks at the first universities 
The foundation of the Universidade de São Paulo (USP) in 1934 marked not only the establishment 
of the first university in the country, but also a new moment in the development of mathematics in 
Brazil. For the first time, students could study mathematics and obtain degrees in mathematics. In 
this sense, the Faculdade de Filosofia, Ciências e Letras da USP became a fertile ground for the 
transformation of the mathematical environment in Brazil with the mathematicians of the so-called 
Italian Mission as protagonists. 
In this context, the main reference in the mathematical analysis was the textbook “Lezioni di 
Analisi” by Francesco Severi, published in 1933. In addition, Severi’s textbook was also a reference 
for teaching analysis at the Faculdade Nacional de Filosofia (FNFi) founded in Rio de Janeiro in 
1939, used by the Italian professor Gabriele Mammana. 
Severi, in the third chapter of his "Lezioni di Analisi", established the concept of number by using 
Hankel's principle of permanence. In particular, he presented the definition of commensurability 
between two homogeneous quantities and constructed the concept of irrational number taking into 
account two classes of rational numbers. 
In this way, I am highlighting the influence exerted by the use of Lezioni di Analisi in the teaching 
of analysis in Brazil in the first years of university functioning, influencing the conception of proper 
textbooks such as the Mathematical Analysis Course (1953) written by José Adelhay, a former 
student of Luigi Fantappié and professor at the FNFi. 
Some Conclusions 
In this way, I can note the enormous influence of the French treatises of engineering tradition in the 
long period of the exclusive function of mathematics in the forming engineers in Brazil. We had a 
strong impact of the Italian School especially Lezioni di Analisi in the first decades from the 1930s 
from the foundation of the first universities. 
Resuming, there was a long period until proper calculus textbooks were composed. The first proper 
calculus textbooks were produced only in the 1950s, the first textbooks published were strongly 
influenced by teaching, i.e., they were produced by compilations of lectures notes. 
• Curso de Análise Matemática written by José Abdelhay, 1953. 
• Curso de Análise Matemática written by Omar Catunda, 1954. 
• Curso de Cálculo Infinitesimal written by Altamiro Tibiriça Dias, 1952. 
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MULTIPLICATIVE SITUATIONS IN BRAZILIAN 
MATHEMATICS TEXTBOOK APPROACHES TO DECIMAL 

NUMBERS 
VERÔNICA GITIRANA, PAULA MOREIRA BALTAR BELLEMAIN and ERNANI 
MARTINS DOS SANTOS 
Abstract 
Several studies had dedicated many efforts on investigating approaches given to multiplicative 
structures in diverse contexts, when considering natural numbers. Nonetheless, very few researches 
addressed multiplicative structure in other themes of school mathematics. This paper discusses some 
results of a research regarding the types of situations presented in Brazilian Mathematics Textbooks 
for Final Grades of Elementary Schools when approaching decimal numbers, considering 
Vergnaud’s studies of multiplicative structures. The sections dedicated to decimal numbers of three 
collections of textbooks of final grades of Brazilian elementary schools were analysed regarding the 
tasks proposed or solved involving multiplicative structure. The results reveal that the complexity of 
the tasks is due to the existence of mixed problems, mainly those that articulate additive and 
multiplicative structures. One to many, Partition, Quotation situations are well distributed among 
the problems involving simple proportionality, and fourth proportionality is less presented. In this 
field, we identified situations with flexible classification. It also reveals an barrier due the term used 
to classify situations called by one to many, when for decimal numbers, the problems require the 
correspondent to a number less than one. 
 

Introduction 
Textbooks, at all school levels, play important roles to teach and to students’ understanding. In 
Brazil, especially at Elementary School, textbooks are also considered to delimitate the experienced 
curriculum. Differently from the prescribed curriculum (Sacristán 2000), presented in official 
documents such as the National Curricular Parameters (Brasil 1997), the experienced in classroom 
is often shaped by textbook guidelines as well as by their teacher’s manual. 
Therefore, it is important to analyse the situations proposed by the textbooks that are one of the 
main resource available to teachers and to students. This sort of analyses can lead us to understand 
the different situations that students solve in school context, trying to understand their nature, 
complexity and which knowledge their resolutions require. According to Vergnaud (2003), it is 
through representations and problem situations that a given mathematical concept acquires 
meaning. 
In this context, a research project entitled “A study on the domain of Multiplicative Structures in 
Elementary Education”, carried out in a network between 2013 and 2017 within the “Observatory 
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of Education” – OBEDUC/E-mult 1 , aimed to investigate and intervene in the practice of 
Elementary School teachers in Multiplicative Structures, based on the "action-reflection 
-planning-action2 training model, with a view to forming a group with collaborative characteristics, 
in three studies (Santana et al 2016). 
In the first stage of this research, among other objectives, a detailed analysis of the collections of 
textbooks most adopted in Brazilian state schools in 2013 was carried out. The present study is part 
of this analysis. In this project, other studies (Magina, Santos & Merlini 2014; Gitirana et al 2014; 
Lautert et al 2015) began to explore a diversity of meanings within multiplicative problems and 
their approaches to multiplicative structures separate each meaning to study each of them deeply, 
also in the context of textbooks. For an accomplishment of this research two questions were raised: 
1. How can students develop math for a solution? 
2. How does the multiplicative framework approach continue in other mathematical topics, such as 
approaching decimal numbers and the fractions approach, for example? 
It has been seen that dealing with natural numbers, the mathematic approaches in the textbook is 
rich in a diversity of situation. Nonetheless, we question whether this diversity is kept within others 
field. Thus, we seek to identify the types of situations presented in Brazilian mathematical 
textbooks for the final grades of Brazilian elementary schools to decimal numbers, considering the 
classification given by Vergnaud (1982) for multiplicative structures.  
The Theoretical Framework: Theory of Conceptual Fields  
The Theory of Conceptual Fields proposed by Vergnaud (1982; 1983; 1988; 1996) is characterized 
as a post-constructive theory, which carries a development perspective. A conceptual field can be 
understood as a set of situations which domain requires a variety of concepts, procedures, and 
symbolic representations, firmly connected between them. 
Vergnaud (1983) points out that understanding of mathematical concepts requires considering 
situations, invariants, action schemes and symbolic representations. On the one hand, it is through 
interactions with the environment that an individual adds knowledge to their concepts. On the other 
hand, every situation experienced by an individual, simple as it may be, involves several concepts. 
Given this, it is difficult and meaningless to study concepts separately, since a concept never 
assumes meaning in a single situation and this situation cannot be analysed through this single 
concept. In this direction, we assume that a concept needs to be experienced through more 
situations. In this sense, the diversity and complexity of multiplicative relations can be illustrated by 
different situations – problems that require the use of multiplication and/or division as solution. 
Gitirana et al (2014) brings the work of Vergnaud's theory, discussing his classification a wide 
variety of mathematical problems that were presented to students in grades 2 to 9 of Elementary 
School. According to the authors, teachers must understand the nature of the different types of 
problem, since such an understanding can help them to propose situations that provide a broad 
conceptual understanding of the mathematical contents. 
The problems of the multiplicative field can be classified with different ways. One classification is 
the relations: quaternary and tertiary. Quaternary relations are characterized by a double 
relationship between two variables which can be of different nature. About ternary relation, it is 
characterized by a relation between three elements, of the same nature. This classification is 
important because of the passage from addictive to multiplicative structure. In the addictive, 
students deal only with ternary structure; meanwhile in multiplicative one, they essentially deal 
with quaternary relations.  
 

                                                                            
1 Project number 15 727, funded by the Coordenação de Aperfeiçoamento de Pessoal do Nível Superior 
(CAPES). 
2 Model applied and developed by Magina (2008). 
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Other type of classification of multiplicative situations, also given by Vergnaud, which were 
discussed and exemplified by Gitirana et al (2014), adopted in the present study are described 
according to figure 1 below. 
 

 
 

Figure 1 – Multiplicative Situations 
 
Multiplicative Comparison: In this type of situation, two quantities of the same nature are 
compared in a multiplicative way by a number that can represent a ratio or relation, and it is 
necessary that we think of terms of a ternary relation. 
Simple Proportionality: These situations present a ratio of proportionality between four quantities, 
two by two of the same nature, and which are related by a rate among the quantities considered as 
different. Simple proportionality problems are divided into four classes of situations: one to many 
correspondence (the relation between variables is explicit, where one object can relate to several 
others); fourth proportional correspondence (when it is not possible to achieve the one to many 
relationship, that is the one to many relation is implicit); partition (the idea underlying the concept 
of division refers to the one to one distribution of things) or division by quotation (a quantity of 
things or objects is reorganized into pre-established quotas). 
Cartesian Product: These situations involve a combination relationship between elements of two 
or more distinct sets, where a new quantity is obtained from the product of others. 
Multiple Proportionality: These situations are characterized by the approach of problems with 
quaternary relations containing more than two quantities relater to two in which it is possible to 
decompose two simple proportions. 
Following this classification, in this study, we analyze the nature of the mathematical situations 
presented in three collections of textbooks from the final grades of elementary school in Brazil, 
regarding multiplicative structure in the sessions dedicated to the study of decimal numbers. 
Methodology 
In order to study, the situations while studying decimal numbers, we decided to study textbooks 
approach to decimal numbers. This topic is one of the first school topic in the expansion of the 
number fields after approaching natural numbers. We selected three mathematical collections of 
Brazilian Textbooks adopted by the partner schools of the OBEDUC / E-Mult Project. The selected 
collections were: 
• TB 1: Centurión et al 2011 - Portas Abertas 
• TB 2: Dante, 2011 - Coleção Apis 
• TB 3: Giovanni Jr and Castrucci 2009 - A Conquista da Matemática 

Once selected the three collections of textbooks, the chapters dedicated to the study of decimal 
numbers were collected. From this, we identified all situations of multiplicative structures and we 
analysed them considering the following criteria: 
1. The identification of multiplicative situations in: 
(a) Resolved activities; 
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(b) Proposed activities. 
2. Analysis of each situation identifying: 
(a) Whether it has a single structure or was a mixed situation (additive and multiplicative; 
multiplicative-multiplicative); 
(b) What kind of structure of the situation (shared classification of the referential proposed by 
Vergnaud); 
The survey of the situations collected was carried out by three independent judges and an analysis 
of the multiplicative problems was carried out through a discussion between three judges. 
 
Analysis of the results 
After analyzing the textbooks chapters, 87 multiplicative situations were identified. In Table 1, we 
have the distribution of the situations considering the problems proposed and the problems solved, 
in relation to the multiplicative field. 

 
TextBook Proposed Problem Solved Problem Total 

TB 1 46 01 47 
TB 2 18 02 20 
TB 3 13 07 20 
Total 77 10 87 

Table 1 –  Number of multiplicative situations per collection considering proposed situations and solved 
problems 

It is observed that, in the three collections, the multiplicative situations are concentrated in proposed 
problems (88.5%), which are usually taken as prototypical in the teaching of school mathematics, 
the solved situations serve as examples in general for students. The largest volume of situations is 
present in TB 1 (54%) in relation to TB 2 and 3 (23% each). This distinguish the approach to 
decimal numbers of TB1 from the others, which seems to be richer in problem solving. 
Regarding the analysis of each specific situation among all the three textbooks, initially the results 
reveal that all them concentrates the problems into simple structure. In general, 36% of the 
situations are of Mixed structure. Nonetheless, a great percentage of TB1 and TB2 situations are 
dedicated to mixed structure problems (Figure 2). Regarding TB3, it dedicates more efforts on 
simple structure problems.  

 
Figure 2 – Distribution of situations of simples and mixed structures 
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The complexification of the tasks is due to the mixed problems, mainly those that articulate additive 
and multiplicative structures. The large majority of mixed problems involves an additive situation 
concatenated with a multiplicative one or vice-versa. 

The Figure 3 illustrates the distribution of problem situations involving the multiplicative 
conceptual field in the three textbooks (situations with simple structure), according to classification 
presented in Gitirana et al (2014). 

 
Figure 3 – Types of multiplicative structures among situation 

It is observed a concentration of simple proportionality (80%) and a 14,5% of multiplicative 
comparison. Only one task involves cartesian product (bilinear problems) and no one multiple 
proportions. This shows a huge concentration of multiplicative problems into one type of structure. 
Looking at proportionality situations, one to many, partition, quotation and fourth proportional are 
well distributed among the problems involving simple proportionality, and fourth proportionality is 
less presented as shown in Figure 4 below. 

 
Figure 4 – Simple proportionality situations 
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All the four types of simple proportionality appear in all TB. Nonetheless, in each TB different 
structure are focused. Quotation is a structure defended to enable good contexts to make sense of 
division between two rational numbers less than one. This structure appears in all TB, nonetheless 
TB2 present smaller dedication to this type of problem. TB3 is the opposite, quotation is the 
substructure most exploited in it. 

In this field, some situations have a missing data, in fact, it requires students to bring it, from his/her 
previous knowledge. Thus, these problems can be classified as: partition or quotations, depending 
on the data students choose to add to the problem. Thus, it becomes a problem with flexible 
classification.  
In this field of decimal numbers, it was also revealed a barrier on the use of the term “one to many”, 
when for decimal numbers, the problems require the correspondent to a number less than one.  
Final Remarks 
The field of decimal numbers in the textbooks analysed reveals that most situations present a simple 
structure, although a considerable volume of situations are of mixed structure. In these situations, 
the increase in complexity is given to problems of mixed structures, especially corporate and 
multiplicative structures.  
Among situations of simple structures, as situations of simple proportion prevail, despite being a 
good theme to explore problems related to area, for example, allowing a good sense for 
multiplication of rational numbers. 
With regard to the types of problems involving simple proportionality, there is good distribution 
among different subtypes and there is a good exploration of quotation problems, important to allow 
the meaning of division of rational numbers. 
Considering that textbooks have a fundamental role in Brazilian school curriculum and that the 
situations proposed in them are important in the formation of mathematical concepts, it is pertinent 
to promote a greater knowledge about the nature of the problems that are presented to students in 
the classroom.  
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TEACHER FIDELITY DECISIONS AND THE QUALITY OF 
MATHEMATICS INSTRUCTION 

OK-KYEONG KIM  
Abstract. 
This study examined fidelity decisions (FDs)—teachers’ decisions on whether to use, modify, or omit 
each of the resources provided in the curriculum, or to add a new element to enact lessons—and 
their impact on lesson enactment within and across tasks and lessons. We particularly examined 
whether various FDs help teachers steer instruction to meet the mathematical goals of the lessons 
and whether they promote high cognitive demand. The findings of the study reveal teacher capacities 
that are needed to make appropriate FDs to transform the written to enacted lessons productively, 
which include recognizing important mathematical points and addressing them in instruction, and 
noticing and bridging gaps in the resources provided by the written lessons. Also, it is important for 
curriculum designers to make the goals and intentions of tasks, activities, and lessons as transparent 
as possible to teachers. Simply listing goals at the beginning of the lesson does not seem sufficient 
Introduction 
Teachers make various decisions when they use curriculum to plan and enact a lesson.1 They decide 
whether to use the task (lesson or unit) in the curriculum and, if so, how to use it. The curriculum 
usually includes various kinds of resources regarding how to enact the task (lesson or unit), such as 
questions to ask, and representations, models, and strategies to use. Teachers decide whether to use, 
modify, or omit each of these elements provided in the curriculum. I call such decisions fidelity 
decisions (FDs), which indicate various possible adaptations teachers make as they use written 
lessons to design instruction. One important question to ask is how such FDs impact the quality of 
enacted lessons, or the quality of the transformation from the written to the enacted.  
This study examined the kinds of FDs and their impact on the quality of the enacted lesson, 
especially those that support or hinder the accomplishment of the goals of the written lesson and 
those that promote students’ engagement at a high or low level of cognitive demand. Mathematical 
points of the lesson and cognitive demand are two important aspects that can indicate the quality of 
instructions and opportunities for students to learn in the lesson. Research questions are: What 
fidelity decisions do teachers make within individual lessons? What impact do such fidelity 
decisions have on the enacted lesson in terms of mathematical points of the lesson and cognitive 
demand?   
Theoretical Foundation 
The term fidelity indicates the alignment between the written and the enacted lessons in general 
(Remillard, 2005). Fidelity of curriculum implementation has been investigated from different 
perspectives, such as curricular coverage (Tarr, Chávez, Reys, & Reys 2006), textbook integrity 
(Chval, Chávez, Reys, & Tarr 2009), and fidelity to the authors’ intended lesson and fidelity to the 
literal lesson (Brown, Pitvorec, Ditto & Kelso 2009). Unlike previous studies that focused more on 
overall implementation of curriculum, Brown et al.’s study examined whether critical elements of 

                                                                            
1 In this paper, the term, curriculum, or curriculum program, indicates a set of curriculum resources for a 
certain grade band (e.g., elementary) developed and published by a group of authors. This includes 
instructional resources for everyday teaching, such as student texts, teacher’s guides for individual lessons, 
and other supplemental materials, such as workbooks, homework books, and curriculum guides. 
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the lesson were implemented, in order to determine the level of fidelity in individual lessons 
observed.  
It is important to analyze fidelity of curriculum implementation in small, meaningful chunks, such 
as tasks or lessons. I expanded Brown et al.’s approach by investigating FDs teachers make at three 
levels (within individual tasks, within individual lessons, and across lessons) in order to see their 
impacts on the enactment of the written curriculum, especially how certain FDs support or hinder 
accomplishing the goals of the written lessons. In doing so, I examined FDs and their impact on the 
enacted lessons in both zoom-in and zoom-out ways, and also unpacked the complexity of FDs in 
terms of meeting the mathematical goals in individual lessons as well as across lessons. Although I 
see the importance of Brown et al.’s examination of the authors’ intended lesson, I focus on the 
goals presented in the written lesson. That is because teachers in general do not have easy access to 
the authors directly; rather, they have to rely on the written materials to interpret the goals of the 
lesson as presented in the curriculum.  
Each written lesson has particular mathematical goals and objectives. Usually they are identified at 
the beginning of each lesson, which helps teachers “articulate the mathematical point” (Sleep 2012) 
of the lesson. However, not all critical mathematical points are clearly identified or addressed in the 
lesson. Enacting the lesson toward the mathematical point is a challenging task for teachers. As I 
analyzed mathematical points of individual lessons and across lessons, I found that mathematical 
points are multi-faceted and can be described from a dual perspective: conceptual foundation as 
well as procedural competence. Teachers’ FDs can promote or hinder the opportunity for students 
to engage with conceptual and procedural aspects of mathematical points. 
In examining the impact of FDs on the enacted lessons, we also consider the cognitive demand of 
the enacted task. The level of cognitive demand indicates the kind of opportunity for students to 
learn (Stein, Grover, & Henningsen 1996; Stein & Smith 1998). Certain FDs increase, maintain, or 
reduce the cognitive demand of the task, which significantly influences the quality of the enacted 
lesson. 
Teachers’ use of curricular resources in individual lessons has been investigated (e.g., Brown & 
Edelson 2003; Choppin 2009, 2011; Lloyd 2008; Remillard 1999, 2000, 2005). A number of these 
studies focused on orientations teachers developed in using recommended resources when enacting 
lessons (e.g., Remillard & Bryans 2004), and identifying types of adaptations teachers make (e.g., 
Forbes & Davis 2010; Seago 2007; Sherin & Drake 2009). In my view, these different ways of 
curriculum use are indeed decisions teachers make whether to follow curriculum suggestions or 
introduce new elements of instructional design. I call all of these teacher decisions FDs, which 
include use, change, omission, and addition. Use occurs when teachers engage with curriculum 
suggestions almost as recommended; change occurs when teachers modify curriculum suggestions 
that significantly alter the intended meaning; omission occurs when teacher does not use critical 
curriculum suggestions; addition occurs when teachers make inputs not specified by the curriculum. 
I argue that teachers make these decisions because they think it will help them accomplish their 
goals for students. However, it is not known how such FDs affect teachers’ orchestration of 
instruction to the mathematical point and opportunities for students to learn. Therefore, it is 
important to investigate the impact of FDs teachers make on the enacted lessons in terms of 
mathematical goals and cognitive demand of enacted tasks and lessons. 
Methods 
The data analysed in this study were drawn from a project investigating K-3 teachers’ curriculum 
use in the US: the Improving Curriculum Use for Better Teaching (ICUBiT) Project.  
Teacher participants and curriculum programs.  Data were gathered from 25 teachers in grades 3-5 
using five different curriculum programs: (a) Investigations in Number, Data, and Space (INV) 
(TERC 2008); (b) Everyday Mathematics(EM) (University of Chicago School Mathematics Project, 
2008); (c) Math Trailblazers (MTb) (TIMS Project University of Illinois at Chicago, 2008); (d) 
Scott Forseman–Addison Wesley Mathematics (SFAW) (Charles et al. 2008); and (e) Math in 
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Focus (MiF) (Singapore Ministry of Education /Marshall Cavendish International, 2008). The first 
three were programs funded by the National Science Foundation; the fourth was commercially 
developed; the fifth was originally from Singapore and has gained popularity in the US over recent 
years. The participant teachers had at least three years of teaching experience and at least two years 
of using their curriculum program. This study drew on data from five teachers, one teacher per 
curriculum.  
Data sources. The data we used in this study include classroom observations, teacher interviews 
(introductory and post-observation), and Curriculum Reading Logs (CRLs). Each teacher 
completed CRLs for each lesson that was observed: on a copy of the written lesson, the teacher 
indicated which parts they read as they planned instruction, which parts they planned to use, and 
which parts that influenced their planning. CRLs helped the researchers see teachers’ plans for 
instruction and compare written and enacted lessons. Each teacher was observed for three 
consecutive lessons in each of two rounds. These enacted lessons were videotaped and transcribed. 
Also, each teacher was asked questions about his/her teaching experience and overall curriculum 
use at the beginning of the study, and then asked about specific teacher decisions in the observed 
lessons after each round of three observations. These interviews were audiotaped and transcribed.  
Data analysis. The main part of the data analysis was coding teacher FDs and their impact on the 
enactment of the lesson. Two researchers chunked Written (W) and Enacted (E) tasks using CRLs 
and videotaped lessons (transcripts and videos), and created lesson analysis tables. In each pair of 
W- and E-tasks, we coded teacher FDs on specific resources—whether each of them was used as 
recommended in the curriculum, changed, or omitted, or whether any new elements were added.  
Once FDs were coded, we examined whether each FD positively or negatively influenced the 
enactment of the task (and lesson), especially whether each FD supported the accomplishment of 
the mathematical point of the written lesson and promoted cognitive demand (see Table 1).  
First, by carefully examining lesson objective(s), key concepts, key ideas, mathematical 
explanations, and instructional guidance, we identified the mathematical point (MP) of each lesson 
including both conceptual and procedural aspects. We indicated whether conceptual, procedural, or 
both aspects of MPs were affected by each FD. When a FD deprived from the MP, we coded it as 
negative. When a FD promoted a component of the MP but conflicts with another, we took a note 
of it for further analysis. This enabled us to identify what kind/component of MP was promoted or 
hindered overall in a given lesson. We also examined FDs in individual and multiple lessons (e.g., 
merging two tasks, changing the order of tasks, and omitting a lesson) and their impact on the goals 
of a series of lessons. 
 

FDs’ impact 
on 

Code Description  

Lesson goals 
(mathematical 

point) 

positive teacher action toward goals 
neutral teacher action not directly related to lesson goals  

negative teacher action moving away from the mathematical 
point/goals of the lesson 

Cognitive 
demand 

positive teacher action increasing the cognitive demand in the 
written lesson, or maintaining high level as in the written 

lesson 
neutral teacher action not related to cognitive demand  

negative teacher action decreasing cognitive demand in the written 
lesson, or maintaining low level as in the written lesson 

    Table 1. Codes for the Impact of FDs on Enacted Lesson 
When coding the impact of FDs on cognitive demand, we drew on Stein and her colleagues’ 
elaboration of kinds of tasks and teacher actions in implementing tasks (Stein & Smith, Henningsen 
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& Silver 2000) and expanded their categories of teacher actions toward low or high cognitive 
demand. Their intension was to determine the level of cognitive demand when a task was 
implemented. In our analysis, we thin-sliced teacher decisions moment by moment and coded each 
action (FD). In doing so, we attempted to do micro-analysis of teacher decisions because individual 
decisions (FDs) influence the overall task enactment and we hoped to see what kinds of decisions 
helped to promote high level of cognitive demand. 
The code of neutral was given when a particular FD did not impact MP or cognitive demand 
positively or negatively. These cases were rare but there were instances of neutral impact. Teacher 
interviews were analysed to see teachers’ intentions behind their decisions. After examining 
individual teachers, we searched for patterns in teacher FDs and their impact on lesson enactment. 
Results 
In this section, the five teachers’ overall and individual patterns of FDs and their impacts on enacted 
lessons are presented in terms of meeting lesson goals (mathematical points) and promoting 
cognitive demand. Then, specific examples of FDs and their impacts are described.  
Overall patterns of fidelity decisions and their impacts   
The five teachers’ FDs are summarized in Table 2, along with raw frequency and percentage. They 
used their curriculum resources in varying degrees; about 20–40% of their FDs were use. In 
contrast, all of the five teachers often added a new element that was not specified in their resources, 
ranging from 48.2% to 74.6%. Change and omission were much smaller portions, compared to use 
and addition in general. EM teacher omitted the most (13%) and MTb teacher had no significant 
omissions. SFAW teacher had the highest percent of use and lowest percent of addition. MiF 
teacher had the highest percent of addition; about ¾ of her FDs were addition.  

Teacher     Use   Change   Omission      Addition   Total 
EM   42 (21.8%)  20 (10.4%)   25 (13.0%)     106 (54.9%) 193 (100%) 
INV   48 (19.9%)   16 (6.6%)     19 (7.9%)     158 (65.6%) 241 (100%) 
MiF   55 (20.5%)   10 (3.7%)       3 (1.1%)     200 (74.6%) 268 (100%) 
MTb   45 (34.6%)   14 (10.8%)        0 (0%)      71 (54.6%) 130 (100%) 

SFAW   62 (41.3%)   10 (7.0%)     10 (0.7%)      68 (48.2%) 150 (100%) 
Table 2. Summary of five teachers’ FDs 

Incidences of the teachers’ FDs in each category (use, change, omission, and addition) were coded 
in terms of positive or negative impacts in articulating mathematical points and promoting cognitive 
demand. Table 3 presents the percent of positive results in promoting mathematical points and 
cognitive demand in each teacher, respectively. As shown in the second column of Table 3, using 
the resources provided in the curriculum mostly led to positive results in articulating the 
mathematical points of the lessons, ranging from 71.2% to 100%. But, the impact of using provided  
 
  

              Use          Change        Omission         Addition 
    MP     CD     MP     CD     MP    CD     MP    CD 

EM    71.2    38.1    40.0    15.0       0      0    65.1    50.9 
INV    73.0    63.6       0      0       0      0    24.1    18.4 
MiF    98.2    65.5    90.0    90.0       0      0    96.0    85.0 
MTb  100.0    97.8    78.6      0       -      -    91.5    90.1 
SFA
W 

   79.0    24.2    70.0    10.0       0      0    60.3    17.6 

Table 3. FDs and percentage of positive impacts 
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resources on cognitive demand varied greatly, ranging 24.2% to 97.8%. This is largely due to the 
types of curriculum they used, whether traditional or standards-based, and the way each teacher 
used provided resources. In the case of SFAW and EM teachers, for example, mostly the procedural 
aspect of the MPs was pursued along with low cognitive demand. 
The impact of additions on both mathematical points and cognitive demand varied greatly as well. 
In general, the percent of positive impact on mathematical point is similar to that on cognitive 
demand in each teacher, except for the teacher using SFAW. It seemed that the kind and quality of 
additions mattered. For example, in a lesson where students were asked cover a coat with base-ten 
pieces to find its area, MTb teacher asked students a set of questions regarding how they could do 
the task in order to guide them with specific things to think about before starting the task. In 
contrast, in a lesson on mean, SFAW teacher asked students to use blocks to represent individual 
values and find the mean of them and yet using blocks was limited to procedural aspect of the 
mathematical point of the lesson along with low cognitive demand. Both teachers added elements 
not specified in the written lessons, such as questions about symmetry or manipulatives (blocks), to 
enact the task/lesson, but their impacts turned out to be very different.  
Changes led to diverse impacts on mathematical points and cognitive demand. Some changes made 
to the written lesson significantly improved the quality of instruction. Others reduced the 
opportunity to articulate mathematical points and promote cognitive demand. In contrast, omissions 
did not lead to a positive impact on the MP and CD in general. On the contrary, except for SFAW 
teacher’s case, most omissions resulted in negative impacts on MP and CD (88 to 100%). In 
particular, MiF teacher’s omission of models to represent subtracting a fraction from a whole 
number significantly hindered students’ understanding of conceptual foundation and procedural 
competence and reduced cognitive demand on students’ thinking of the task.  
The interference between different FDs was also evident in the data. For example, INV teacher’s 
case, the portion of use was much smaller compared to that of addition. While not using the 
elements suggested in the written lessons, the teacher added new elements that were not productive. 
In place of use, she also changed or omitted elements from the recourses in a way that significantly 
affected the enacted lessons. The detailed case of INV teacher below illustrates these interferences 
among difference FDs that the teacher made. 
Table 4 presents percentages of positive and negative impact on both MP and CD in each category 
of the teacher FDs. The impacts on both MP and CD in three teachers’ FDs (INV, MiF, and MTb 
teachers) showed a high correlation between MP and CD, which means that when the impact on MP 
was positive, it was the case with CD as well, and when negative on MP, also negative on CD. It 
was similar in EM teachers’ FDs, except for the category of use. In contrast, SFAW teacher’s FDs 
showed a low correlation between MP and CD. This is mostly due to the procedural focus in the 
lessons. 

              Use          Change        Omission         Addition 
  positive   negative positive  negative  positive  negative positive negative 

EM    38.1      7.1    25.0    65.0       0      88.0    50.0    27.4 
INV    64.6    25.0       0    87.5       0      94.7    17.1    69.0 
MiF    83.6      1.5    60.0    10.0       0      100    85.0      3.5 
MTb    97.8        0       0    21.4       -         -    90.1      8.5 

SFAW    22.6      6.5    10.0    10.0       0      20.0    16.2    19.1 
Table 4. FDs and percentage of positive/negative impacts on both MP and CD 

Fidelity decisions and their impact: Examples from INV teacher 
I now use INV teacher’s (Amy) case to illustrate kinds of FDs and their impact on the lesson 
enactment in more detail. Amy taught third grade using the second edition of Investigations in 
Number, Data, and Space (TERC, 2008). She had taught the curriculum for 6-7 years by the time 
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she was observed. She was confident in using the curriculum and had an established practice of 
using it. In this section, I provide the overview of the written lessons and enacted lessons to explain 
FDs. Then, I describe specific FDs in enacting tasks and lessons along with their impacts on the 
mathematical points and cognitive demand. 
The observed lessons were based on a series of six written lessons on an investigation (i.e., a series 
of lessons on a focused topic) of “Understanding Division” in the unit titled Equal Groups: 
Multiplication and Division. The previous three investigations in the unit are “Things That Come in 
Groups,” “Skip Counting and 100 Charts,” and “Arrays,” in which students explore equal groups 
and multiplication. Overall, the written lessons on understanding division emphasize the meaning of 
multiplication and division and the inverse relationship between the two operations in solving and 
creating multiplication and division story problems. These mathematical points appear in multiple 
lessons, which means that they are explored and developed through multiple lessons. It is important 
to understand why certain mathematical points are repeated across lessons and how the 
mathematical points are built on previous lessons. Therefore, it is clear that in the six lessons, 
students are expected to understand division in relation to multiplication. 
In fact, there were serious gaps between the lessons observed and the written lessons. Overall, the 
teacher used activities with significant change in mathematical points of the lessons. Also, she 
reduced the cognitive demand of the tasks/activities and the lessons. For example, in a lesson 
segment that requires students to share various solutions for one of the problems they solved and 
reflect on the attributes of division problems, the teacher focused on solutions to individual 
problems (one solution per problem), talking about all the six problems students solved as a way of 
checking students’ solutions to the problems. She did not highlight the mathematical points and 
meaning across problems. That is, she did not bring up the relationship between multiplication and 
division, and did not emphasize the meaning of the two operations. 
Also, directions she changed and statements she omitted, added, or changed had negative impacts 
on the enacted lessons overall. In contrast, most of directions and models/strategies she used from 
the curriculum positively affected the lessons. This implies that in general using the resources in the 
written lessons helped Amy steer the instruction toward mathematical points and promote a high 
level of cognitive demand. Overall, change or omission of the guidance in the written lessons and 
addition of resources outside the curriculum (i.e., the written lessons) influenced the lesson 
enactment negatively. Below, I describe in detail the kinds of Amy’s FDs and their impacts on her 
enacted lessons in the cases of omission, addition, change, and use, respectively. Although I explain 
them individually, the FDs Amy made in these different ways are closely interrelated, affecting the 
quality of the enacted lessons. 
Omission. In Amy’s case, the most fundamental FDs that impacted the enacted lessons negatively 
were omitting lessons, activities, and curricular guidance. By doing this, she steered the lessons 
away from their mathematical points and guided students to just solve problems. Through problem 
solving and discussing their solutions, students should develop the desired understanding of the 
mathematical points identified by the curriculum designers. However, Amy focused on solving each 
problem and did not highlight important mathematical points, such as understanding and using the 
inverse relationship between multiplication and division to solve problems.  
The critical omissions she made include one lesson on arrays, which could have helped students 
relate multiplication and division using the product and their factors. She also omitted a task that 
provided an introduction to writing multiplication and division story problems. The task especially 
brings up two related expressions (6 × 3 and 18 ÷ 3) and asks students in pairs to come up with a 
story problem for each. The focus is on the difference between the two operations and the task gives 
an opportunity to assess student thinking before assigning the task of creating multiplication and 
division story problems. The guidance explicitly indicates that teachers need to: 

Listen for student understanding of the difference between multiplication and division. For 
example, do the problems students make for the expression 18 ÷ 3 begin with the quantity 18 
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and divide it into 3 equal groups or groups of 3? Do the problems for 6 × 3 involve 6 groups of 3 
or 3 groups 6? (TERC 2008, p. 126) 

Instead, she spent time on generating key words for multiplication and division. She made 
comments as students offered some expressions as key words, whether each suggestion would be 
acceptable in each operation. In doing so, she lost an opportunity to highlight characteristics of 
multiplication and division in relation to each other. The loss of meaning continued as she enacted 
the next lesson (creating multiplication and division story problems). See the guidance in the 
curriculum below on how to intervene when students have difficulty generating their own 
multiplication and division story problems.  

Help students talk through the elements of a multiplication situation (two known factors and an 
unknown product) and a division situation (product and one known factor). Write multiplication 
and division equations with small numbers and ask students to model the action of each with 
cubes. (TERC 2008, p. 127) 

This guidance is followed by the specific script shown below, to use during intervention. 
Look at this equation, 3 × 4=__ (or 12 ÷ 4=__). Can you show me with cubes what this problem 
would look like? Can you think of a situation to write about in which you might have 3 groups of 
4 things (or 12 things divided into groups of 4 or 4 groups)? How can the class poster of “Things 
That Come in Groups” help you? (TERC 2008, p. 128) 

In the guidance above, it is clear that the two operations deal with equal groups and the product and 
that the two operations have an inverse relationship between them. However, in her intervention, 
omitting the entire guidance, Amy did not highlight the critical aspect of the operations. Rather, she 
focused on using key words to determine which operation a given problem required or to create 
multiplication and division story problems.  
Other critical omissions are mathematical statements, directions (teacher questions), and models. In 
explaining division, the curriculum highlights that “The answer is the number of groups or the 
number of items in each group” (TERC 2008, p. 119). Also, relating multiplication and division, a 
chart is used with specific terms such as number of groups, number in each group, product, and 
equation. According to the guidance, the teacher is supposed to help students to “recognize that the 
unknown information for this problem is the product (the number of yogurt cups in all)” (TERC 
2008, p. 124). In fact, the teacher rarely used such expressions in explaining multiplication and 
division, and, as a result, many students were not clear about what makes an operation 
multiplication or division. For example, when creating a story problem for multiplication, several 
students did not understand that they had to use equal groups. A story problem like, “I have 10 
apples and my friend has 5 apples. How many do we have in all?” indicates that students did not 
know how multiplication problems are different from addition problems. Relying on key words, to 
the students “how many in all” could be sufficient to make a multiplication story problem.  
While focusing on and creating key words for solving problems, the meanings of the two operations 
were only implicitly shared. When much confusion was apparent among students while generating 
multiplication and division story problems, Amy intervened with many struggling students often 
focusing on key words. She did not explicitly mention that multiplication and division deal with 
equal groups, using expressions such as equal groups, number in each group, or product. At best, 
she said:   

If you have 10 and he has 5 and we want to know how many in all, we’re just putting them 
together.  So that’s just adding. But if you have a pack of 10 and a pack of 10 and he has a pack 
of 10 and a pack of 10 then you’ve got 10, 10, 10, 10.  Which is multiplying.  Does that make 
sense, sweetheart? So, multiplication means I have something that has a certain number of 
something’s in it. Like, I have three packs of gum, each pack has 5 pieces. (Second observed 
lesson) 
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She also never brought up how a known multiplication combination could be used to solve a 
division problem. This helps students see and use the inverse relationship between the two 
operations in solving and generating multiplication and division story problems. Throughout the 
lessons, she failed to highlight this important mathematical idea. She also failed to recognize this 
idea even when students brought it up. Solving a multiplication problem of 5 × 7 that used the same 
combination of numbers in a previous division problem, a student responded that 5 × 7 = 35 by 
using the related division problem they solved. The teacher began the problem without using this 
relationship, as if this was a totally different problem. She repeatedly asked, “How do you know 
that?” Then, they counted by 5s again exactly the same way they did in the previous problem for 35 
÷ 5 = 7. Also, she did not ask critical questions, such as “Describe this problem. What information 
do you know about this problem? What do you need to find out?” Instead, she asked, “What is our 
key word? Is this multiplication or division?”  
The teacher did not push for multiple strategies at least during the whole group discussion. This is a 
serious neglect of the curriculum’s pedagogical approach. She did not provide students with an 
opportunity to share multiple strategies and compare them. Her students were not offered a critical 
strategy of using a multiplication combination to solve a division problem. She talked about all the 
problems students were asked to solved, one solution per problem based on students’ response, 
rather than focusing on one or two with multiple strategies as suggested in the curriculum.  
Addition. Some guidance, questions, and statements Amy added were effective. They promoted 
students’ understanding and required high cognitive demand. For example, every time when solving 
a story problem, Amy asked students to visualize the problem situation by closing their eyes and 
imagining what is happening in the problem context.    

To share equally because, here again, get that picture in your head.  Kind of close for a second, 
imagine you and your two best friends standing on either side of you.  Mom gives you a deck of 
18 playing cards and you’re gonna pass them out. … That’s exactly what’s gonna happen, right?  
I’m seeing me and my two best friends and Mom’s standing in front of me and she’s going, “Ok, 
here’s one for you, one for you, one for you.”  We’re gonna share them equally. So we we’re 
taking those cards and dividing them up among our friends.  Do you agree? … Do you see it 
now? (first lesson observed) 

The written lessons include specific guidance, such as “encourage students to act out the action of 
each problem, using cubes or drawings” (TERC 2008, p. 122), to help students understand what the 
problem is asking them to do. However, imagining the problem situation to figure out what they 
need to do to solve the problem was her own addition based on her colleague’s suggestion at the 
school district meeting. This visualization helped students see what is happening in the problem, 
encouraging students to think about the meaning embedded in the problem and relating that to an 
operation.  
She also asked some critical questions that were not included in the written lessons. These questions 
prompted students to relate the solution process with the problem. For example, students counted by 
5s and reached the target number, 35, as a way to solve 35 ÷ 5. Instead of determining the answer 
right away, the teacher asked students what the answer was to the given problem and how they 
knew that was the answer. She provided students an opportunity to step back from counting by 5s 
and relate that to the given problem. She also added a statement, “1, 2, 3, 4, 5, 6, 7. It’s how many 
times you counted by 5. So, our answer is 7.” This highlighted the mathematics embedded in the 
skip counting, i.e., how many groups of 5 are in 35 tells the answer to 35 ÷ 5.   
However, as mentioned previously, her addition of using key words in the lessons significantly 
minimized the positive impact of her added guidance, questions, and statements. Emphasizing key 
words throughout the lessons, Amy replaced activities and directions with those around key words. 
For example, she omitted an activity of generating and discussing story problems for 6 × 3 and 18 ÷ 
3 and added an activity of generating words and expressions that cue multiplication or division. She 
asked students to underline key words and determine which operation to use, and find “the 
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numbers” in the problem to execute the operation determined. She also made problematic 
statements usually around key words, such as, “If it says ‘in each,’ it’s gonna be a division 
problem.” She made students’ problem solving mechanical in this way—find key words, determine 
the operation to use, find the numbers to use, solve the problem, and write the number sentence, 
reducing cognitive demand greatly, and misguiding students’ thinking about multiplication and 
division.  
As a result, after spending two days generating multiplication and division story problems, still 
more than half of her students were not able to complete the task. On the third day of classroom 
observation, there was a range of student-generated story problems. Some students had stories but 
no questions; some students did not have multiplication or division contexts (addition or subtraction 
instead); some students had numbers that do not work well (34 things divided equally into 3 or 4 
groups); students had only one type of story problem (both multiplication or both division).  
Change.  Her significant change of given resources was mostly around mathematical goals of the 
lessons and mathematical statements provided in the written lessons. She used the problems and 
tasks provided in the written lessons, but the way she used them altered MFPs significantly. She 
also changed goals of discussion and moved away from the MFP that should be highlighted through 
discussion. She stated that at the beginning: “The reason being the primary objective of us 
correcting these papers is so that you can talk about what the key words are when you’re creating a 
multiplication or division problem.” In fact, the written lesson directs teachers to have students 
share their solutions to two particular related problems (one multiplication, 4 × 5 = 20, and one 
division, 20 ÷ 4 = 5) and highlight what each operation means and how they are related to each 
other. Instead, Amy went through all the problems students solved, one by one, to identify key 
words and determine which operation to use.  
Also, she omitted most of the important mathematical statements or changed them to promote a 
different meaning. In particular, Amy significantly altered mathematical statements provided in the 
written lessons when she highlighted the mathematics students need to learn or use in the lessons. 
For example, she mentioned several times, “Division sentence always starts with the biggest 
number.” The statements included in the written lessons are: “Each division problem gives a total 
that must be divided into equal groups. The answer is the number of groups or the number of items 
in each group” (TERC 2008, p. 119). Certainly Amy altered the meaning of division that students 
need to learn and did not highlight the important attribute of division—dealing with equal groups.  
Overall, her changed directions to guide students to engage in the mathematics of the lessons and 
altered mathematical statements greatly minimized students’ learning opportunity in the lessons of 
multiplication and division in the way they were designed.  
Use.  Amy used problems, tasks, and activities provided in the written lessons. She assigned them 
to students and discussed the meaning of each problem by helping them visualize the problem 
situation and solutions to the problems. She also had MFPs in her mind as she read them while 
preparing for the lessons. She also used models, representations, and strategies that were included in 
the written lessons, such as drawing pictures of equal groups and counting by a certain number to 
determine the product or the number of groups. However, her use of resources (lessons, tasks, 
directions, mathematical statements, models) was mainly based on decisions on what to do, not 
necessarily about how to do. For example, she did not follow the guidance regarding how to use the 
problems to highlight the meaning of multiplication and division and the inverse relationship 
between the two operations. Most of directions and guidance were ignored when they addressed 
mathematical points embedded in the problems and how to help students understand the big ideas 
and complete their tasks using the big ideas. Although Amy read the guidance, she did not clearly 
relate directions with identified MFPs. Likewise, she rarely used mathematical statements that 
highlight the relationships and meaning of multiplication and division. Instead, she omitted or 
altered those important statements and often added inaccurate statements that are not included in the 
written lessons (e.g., “division starts with the biggest number”). 
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To summarize, basically Amy altered the written lessons on multiplication and division 
significantly and did not meet the many of MFPs sufficiently. Although at times she made 
appropriate adaptions that supported mathematical goals and high cognitive demand, her ignorance 
or alterations of critical resources, such as directions and mathematical statements, as well as 
inappropriate additions caused her to fail to create opportunities for students to learn the meaning of 
and relationship between multiplication and division.  
Summary of Findings   
The FDs explored in this study varied across the five teachers. One thing common across the 
teachers was that they had a tendency of adding new elements to enact the lessons from the program 
they used. In the case of change or addition, its impact on mathematical points and cognitive 
demand varied greatly. Some teachers tended to make a decision that supported students’ learning 
of mathematical points of the lessons and their engagement with high cognitive demand; others did 
not. It is assumed that this was in part because of the curriculum program they used. Interestingly, 
omission was mostly unproductive across the enacted lessons observed. The INV teacher’s case 
illustrates specific impacts of her use/change/omission/addition on students’ learning of 
multiplication and division. These findings facilitate the discussion below. 
Discussion 
Teachers can make various FDs depending on their classroom situation. However, such decisions 
need to be made in accordance with the mathematical goals of the lesson. The case of Amy 
highlights that making appropriate FDs (use, omission, change, and addition) greatly depends on 
teacher capacity of recognizing important mathematical points and addressing them in instruction. 
This result is aligned with what Sleep (2012) refers to “mathematical purposing.” According to her, 
mathematical purposing involves articulating the mathematical point and designing instruction to 
the mathematical point. Essentially, making right FDs is based on understanding the mathematical 
goals of the lesson and determining which guidance to use and how to use it in order to teach the 
lesson toward the goals.  
The results of the study also reveal that making appropriate additions to enact lessons requires 
teacher capacity of noticing and bridging gaps in the guidance provided by the written lessons. 
Amy, as described in this study, made numerous additions to the written lessons while enacting 
them. Some of them positively influenced the enacted lessons; others hindered meeting the lesson 
goals and reduced the cognitive demand of the task. For example, she asked students what their 
answer would be once they skip counted by 5s as a way to solve 35 ÷ 5. The written lessons include 
skip counting as a strategy and provide examples of using this strategy. However, there is no 
additional guidance regarding how to talk about this strategy with students. Amy specifically added 
an important question that made students reflect on the skip counting and how that leads to the 
solution to the given problem. In contrast, she thought that it was important to add key words that 
were not specified in the written lessons. She determined to add this element to the lessons to help 
students know which operation to use. This decision indicates a lack of her understanding of the 
MFPs, which influenced her to misidentify the gap.      
In fact, capacities needed to make good FDs that we described above elaborates Brown’s notion of 
Pedagogical Design Capacity (PDC), which he defines as “a teacher’s capacity to perceive and 
mobilize existing resources in order to craft instructional episodes” (Brown 2009, p. 29). He further 
describes, “PDC describes the manner and degree to which teachers create deliberate, productive 
designs that help accomplish their instructional goals” (ibid.). Therefore, examining kinds of FDs 
and their impacts on instruction and providing appropriate teacher preparation and education will 
support teachers to develop PDC that is needed for productive curriculum use.   
Curriculum designers need to make the mathematical point of the lesson clear in terms of when it is 
introduced and how it is developed through a series of lessons. Although MFP 2 is greatly 
emphasized in the written lessons that Amy used to teach multiplication and division, it is not clear 
how MFP 2 is met in Lesson 4.1. In this lesson, a strategy is included of using a known 
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multiplication combination (4 × 5 = 20) to solve a division problem (28 ÷ 4), that is, creating 5 
groups of 4 and then adding some more groups of 4 to find the answer. Other than including this 
strategy, this lesson does not clearly indicate why MFP 2 becomes an important mathematical goal 
to accomplish and how this goal can be met. Subsequent lessons do not provide clear explanations 
either, although instructional activities in the subsequent lessons more explicitly target this MFP. 
Without sufficient knowledge, teachers may miss this important mathematical point in instruction, 
as Amy did, and teachers will greatly benefit from explicit explanations about mathematical points 
and how lesson activities accomplish them in the written lessons.  
The findings of the study suggest that professional development on curriculum use is needed even 
for teachers who have used the given curriculum for a long time. Amy recognized the usefulness of 
visualization when she heard that at the district’s meeting and used it in her teaching. She was open 
to suggestions and tried to learn new things, but she still had past habits of and beliefs on 
accustomed teaching moves and decisions. She thought that key words really helped students 
understand what multiplication and division are, although she noticed her students struggled a lot. 
Teachers like Amy need revisited professional development highlighting the essence of the teaching 
approaches and rationale behind each activity and connections across activities and lessons. For the 
first couple of years using a new curriculum, teachers read carefully; later they tend to rely on their 
past experience and colleagues, rather than using curriculum carefully. Missing important elements 
in the lessons, Amy confessed that she just skimmed through the lessons, as she had already taught 
them for 6-7 years. This justifies that professional development on using a curriculum is necessary 
for experienced users as well.  
This study explored what kinds of FDs teachers make and how they impact lesson enactment within 
and across tasks and lessons. We particularly examined whether various FDs help teachers 
articulate the mathematical points of the lessons and whether they promote high cognitive demand. 
The findings of the study reveal particular teacher capacities that are needed to make appropriate 
FDs to transform the written to enacted lessons productively. Also, it is important for curriculum 
designers to make the goals and intentions of tasks, activities, and lessons as transparent as possible 
to teachers. Simply listing goals at the beginning of the lesson does not seem sufficient.  
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Abstract 
We present the experience of the undergraduate course on Mathematics textbook analysis in the 
teacher training programme at Unicamp (Brazil) from 2014 to 2016, based on qualitative analysis. 
Our findings corroborate a number of novel practices both in the lecturing process and in 
theoretical methodology. Our contribution spans over both intrinsic and comparative analyses of 
textbooks, the acquisition of good practices from textbooks of various countries, the production of 
textbook material to a high standard of content and layout and the possibilities of reflexive feedback 
from students into the course structure itself.   
Introduction 
The undergraduate teachers training programme (Licenciatura) at the University of Campinas 
(Unicamp) has recently incorporated the one-semester (60h) course on Analysis of Mathematics 
textbooks and teaching materials as a mandatory curriculum requirement. The course had existed 
before as an optional subject and it has attracted substantial interest from students since its total 
restructuring, by the first-named author, in 2014. Its objective is to prepare the students, as future 
teacher, to systematically evaluate textbooks from the perspectives of individual quality, relative 
quality and consonance with international standards. To that end, a number of novel practices have 
been introduced, and the aim of this paper is to explain its innovative methodology, based on 
qualitative analysis. 
For our purposes, the term textbook designates books as such but it also encompasses similar 
printed teaching support materials, such as hand-out sets, examples sheets and so on. The critical 
examination of the textbooks addresses content, structure, language, layout, examples and 
exercises, both in variety and in quality. 
1- The official system of textbook evaluation in Brazil 
The use of standardised textbooks has been ubiquitous in Brazilian classrooms for decades. 
Following the international norm, the textbook is the teacher's most adopted resource (Valverd 
2002). The primary role of the textbook is to support the teacher, who is free to use it in their own 
way, integrating it, for example, with other media such as the computer as a tool, as well as online 
content, video, concrete materials and further bibliography. In Brazil, the assessment and 
distribution of textbooks are performed by a federal programme under the Ministry of Education. 

1.1- The National Textbook Programme (PNLD) 
Mazzi and Amaral (2017) produced a historical account of Mathematics textbooks in Brazil, tracing 
it back to the first known examples and studying the evolution of relevant public policy.  While a 
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number of official initiatives at local and national level have been set up over time to ensure 
minimal quality standards, year 1985 marks the consolidation of the current assessment framework, 
with the establishment of the Brazilian Federal Government's National Textbook Program (PNLD)1. 
The Programme schedule is organised in three consecutive 3-year cycles, each dedicated to one of 
the three segments of schooling (Elementary, Middle or High school).  Every year, independent 
authors may submit their collections for the current segment to be certified by the PNLD committee 
at the Brazilian Ministry of Education (MEC). To do so they must pair up with a publisher, who 
applies on their behalf for evaluation. 
Approved collections are announced by MEC in the PNLD Textbook Guide, which is sent to every 
state school (though not to private schools) in the country and also made publicly available on the 
Ministry’s webpage. Each school adopts independently the collection best suited to their 
pedagogical project at each level of schooling (Brazil 2012). Finally, collections are purchased from 
publishers and sent to every public school pupil. It should be noted that the analysis takes place 
every three years for each cycle. "Thus, each year, MEC acquires and distributes books for all 
students in a segment, among Elementary school, Middle school or High school" (Brazil 2012, p.2, 
translated by the authors). Distributed books are expected to be retained and returned for use by 
other students in subsequent years. 
It stands to reason that the teacher has an important role in this process, and yet most teacher 
training programs in Brazil offer little systematic criteria, if any at all, for that crucial choice. The 
object of this paper can be seen in this context as a relevant set of skills found severely lacking in 
the current Brazilian undergraduate teacher training degrees. 

1.2- PNLD criteria and procedures 
Every PNLD public call establishes a set of criteria for textbook evaluation, with rather explicit 
sufficient requirements for approval. This includes a common core, applicable to all school 
subjects, addressing for example universal ethical principles, no reference to religion or 
merchandising, the presence of some interdisciplinary perspective, actuality of concepts and 
compliance with a number of laws, regulations and manuals. On the other hand, subject-specific 
criteria for Mathematics textbooks consist of certain curricular guidelines and a list of cognitive 
skills to be developed, such as logical thinking, rational argumentation, mathematical modelling and 
so on. Finally, some few criteria for direct rejection are provided, such as conceptual errors, 
methodological inconsistencies, and failure to cover all broad subareas of Mathematics, as 
prescribed by the curricular guidelines (Brazil 2014; Borba & Selva 2013). 
For most of its existence, the actual PNLD assessment work has been performed at an accredited 
University, by teams comprising academic specialists in Mathematical Education (from different 
Brazilian institutions), as well as teachers of the three levels of schooling and other Education 
professionals. Submitted collections are analysed in a double-blind review process. The referee 
reports are then examined by the Programme's steering committee, which issues a pass-fail verdict. 
2- Textbook analysis in Brazilian teacher training (Licenciatura in Mathematics) 
In Brazil, teacher training is an independent subject-specific undergraduate degree called 
Licenciatura, which typically lasts 8 to 10 semesters. For the purposes of this article, that term will 
refer specifically to the Licenciatura course in Mathematics. 
2.1- Current literature 
Rosa, Ribas & Barazzutti (2012) report on the lecturing of a Licenciatura course dedicated in part 
to the evaluation of high school textbooks in Mathematics. Their points of analysis included  the 
tasks proposed in a given book, the methodological approach of the content and its adequacy to the 
proposed age group. They follow an analysis script somewhat adapted from the PNLD criteria, in 
which they examine in broad terms: 
                                                                            
1 Programa Nacional do Livro Didático, in Portuguese. 
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• The physical characteristics of the textbook, eg. cataloguing data, number of pages etc. 
• The diversity in subareas of mathematics, such as numbers and operations, functions, 

algebraic equations, Euclidean geometry, analytic geometry, statistics and probability etc. 
Are all fields addressed? Which ones get more and less emphasis? Is this emphasis 
consistent with the grade for which the book is intended? 

• Syllabus and connections between topics. Is content selection appropriate? Are there explicit 
interconnections between the contents of different chapters? 

In addition, a sample of two specific contents is selected by the course students for detailed 
analysis, according to the previous three axes as well as: 
• The quality of content, how it is introduced and developed. Are there links to previous 

knowledge by the students, and in what form? What types of exercises are offered, which 
proportion address repetition and memorisation, as opposed to more elaborate problem 
situations? Do they allow students to test different strategies? Do either contents or exercises 
have inconsistencies? Is there incentive for student-student or student-teacher interaction in 
proposed activities? Is there any employment of other teaching resources? Is there any kind 
of contextualization with social practices and/or other fields of knowledge? 

Finally, the authors stress the importance of analysing a textbook before using it in class, since good 
material can assist in the construction of lesson plans and their time-management, as well as suggest 
alternative classroom activities. Conversely, they warn that the teaching-learning process may be 
hindered when the textbook is in disaccord with the objectives set by the teacher, in which case it 
can drive the teaching proposal astray or limit the exploration breadth around a given concept. 
Salla (2012) argues that some undoubtedly relevant aspects such as conceptual errors, biases, 
methodological inconsistencies, problems in layout and overall lack of standards are already 
evaluated from the outset by the PNLD process. She suggests that teachers should add a further 
layer of analysis in terms of: 
• how the textbook relates to knowledge that students bring from outside school; 
• whether possibilities of discussing alternative resolution strategies are presented; 
• if the contents are motivated from a contextual problem, as opposed to an emphasis on 

algorithmic procedures; 
• whether activities encourage experimentation, valuing pupils' individual strategies and 

enabling logical and autonomous thinking; 
• finally, whether there is a balanced presence of the various subareas of Mathematics, while 

observing that the PNLD Textbook Guide entry for each collection already contains a graph 
representing their respective proportions. 

Lima et al. (2001) is arguably the first systematic effort by a team comprised essentially of 
mathematicians to engage with school textbook quality. In some sense, it is the only Brazilian 
reference to offer a category-based grid with definite a priori standards stated in objective terms. It 
structures the intrinsic analysis of a textbook around six main axes. The first one, Concepts, is by 
far the most present in their actual analyses and it unfolds into painstaking detail, as per the 
following scheme: 

* Concepts  Mistakes 

Typos and misprints 
Faulty reasoning 
Incorrect or incomplete 
definition 
Poorly stated or vague concepts 

Excessive formalism 



 Sa Earp and Amaral 

 286 

Inadequate language 
Imprecision or omission 
Obscurity (ambiguity or self-contradiction) 
Confusion of concepts 
Objectivity (balance between topics) 
Connections between topics 

* Manipulation 
* Application 
* Pedagogical qualities 
* Adequacy to contemporary social reality 
* Constructive role and fairness of the assessment process itself 

Table 1: Six axes of intrinsic analysis of a textbook. Source: Lima et al. (2001) 
It should be noted that Lima et al. (2001) then set out and colossally apply this grid to the entire 
contents of each of the (twelve) textbooks from the preceding year's PNLD Guide. Their conclusions 
are rather damning for every single one of them, and we believe that this had a lasting impact in the 
textbook authors' establishment, and indirectly contributed to raise the national standards of the 
PNLD itself. To the best of knowledge, this experiment has not been henceforth replicated. 

2.2- The Unicamp context 
Since its relatively recent foundation in 1966, the University of Campinas (Unicamp) has risen to 
the position of Latin America's top University2. It is public, tuition-free and maintained by São 
Paulo State; its budget is protected by law at a fixed proportion of the State's yearly tax revenue, 
currently around R$ 3 billion or approximately U$ 1 billion. The community encompasses about 2k 
faculty and 35k students, of which 19k undergraduates and 16k graduate students. Unicamp is 
strongly research-oriented, offering 153 postgraduate degrees, relative to 66 at undergraduate level. 
It responds for about 15% of Brazil's total scientific output, and its patent production is second only 
to oil giant Petrobrás, among both the public and private sectors. 
In Unicamp, the Mathematics Licenciatura programme is based at the Institute of Mathematics, 
Statistics and Scientific Computing (IMECC)3, where, for good or worse, it is taught almost 
exclusively by research mathematicians, and the remaining credits are offered at the School of 
Education. The degree lasts 8-9 semesters (3120 hours) and it consists mostly of evening classes, 
seeing as many of the students work on day jobs – quite a few of them actually already teach in 
some informal capacity. Admissions are subject to the University's dedicated Vestibular exam, 
which covers the whole high school curriculum, weighted by some minor emphasis on the 
Mathematics score. The junior class typically consists of 70 places, of which some 25-30 eventually 
graduate every year. 
Following changes in Federal and State level pedagogical directives, the degree curriculum 
underwent a recent reformulation (2013) to incorporate more independent written production and 
elements of practical experience and cultural diversity. In this context, the formerly optional course 
on Analysis of Mathematics textbooks and teaching materials was also reformed and became 
mandatory. It is currently offered every other semester on Friday evenings (19:00-23:00) and it 
accommodates up to 25 participants. 
3- Methodology 
This article addresses some qualitative conclusions based on three iterations of the course on 
Analysis of Mathematics textbooks and teaching materials, lectured to Unicamp's Licenciatura 
classes by the first-named author. It should be mentioned from the outset that, not unlike most other 

                                                                            
2 cf. Times Higher Education assessment, 2017. 
3 Instituto de Matemática, Estatística e Computação Científica, in Portuguese. 
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faculty working with Mathematics Licenciatura classes, the lecturer is a research mathematician 
with virtually no authoritative training in Education. The course evolved therefore as a two-way 
dialectical learning process, in which students' pedagogical background often took prominence and 
helped shape the course dynamics, as well as its materials. Indeed, the focus of our investigation 
lies in the various methodological resources developed during these experiences and it is largely 
derived from students' own perceptions and independent intellectual production. 
In particular, on the issue of comparative analysis, there are very few references describing the 
process of choice by Mathematics teachers (e.g. Rosa, Ribas & Barazzutti 2012) and one of the 
aims of this paper is to contribute to this relevant research subject. 
Our source of data consists essentially of coursework by students, produced over the years 2014 to 
2016 supplemented by oral accounts from students themselves. Since the course itself has been 
recently created, its approach to pedagogical and methodological questions follows a contemporary 
perspective, quite often derived from current theoretical trends which help shape the students' 
pre-existing views of Mathematical Education.   
4- Outline of the Maths textbook analysis course at Unicamp 

4.1- The five tasks, abilities and skills 
The course is organised in fifteen weekly workshops of 4h each, divided in five four-week modules 
(up to overlapping, see below) in which teams of 4-5 students must complete a concrete task, 
assessed by a written report and an oral presentation of findings discussed with the whole class. The 
tasks address the following abilities: 
Task 1: Vertical analysis - to criticise and improve on a textbook. 
Task 2: Horizontal analysis - to compare two textbooks on the same content. 
Task 3: Foreign textbook analysis - to extract useful resources from foreign materials. 
Task 4: Production of teaching material - to write original content to a high standard of text and 
layout. 
Task 5: Original contribution - to take initiative and suggest an independent contribution. 
As to secondary skill developments, Tasks 1 to 3 require the students to formulate and apply 
methodological protocols and assessment grids and Task 4 requires advanced layout management. 
Having in mind a gradual build-up of template creation skills towards Task 4, all  coursework from 
the outset must be submitted in LaTeX. Students are also encouraged to coordinate asynchronous 
teamwork combining chat apps, cloud folders and shared editing alternatives.  
Each task module iterates a 4-week cycle, organised as follows: 
Week 1: Description and motivation. 
Week 2: Formatting and discussion of assessment. 
Week 3: Critical pre-submission review. 
Week 4: Submission of report and oral presentation. 
Notice that subsequent modules overlap: the Week 4 activity of Task n and the Week 1 activity of 
Task n+1 use up respectively the first and second halves of the same 4h session. 

4.2- Teamwork dynamics 
In the course experience at hand, students are not allowed to form the groups themselves, and are 
rather reshuffled after each task in order to maximise, in order of priority, (i) the total number of 
colleagues with which each one interacts during the whole term, and (ii) the heterogeneity of each 
group, in terms of skills and motivation, as assessed from results of previous tasks and participation 
in class. This is particularly justified in a workshop-based course which involves substantial 
extra-classroom commitment, since one most certainly wants to avoid the good students clustering 
up while everyone else is left dependent on direct intervention by the lecturer. Conversely, students 
confidentially evaluate each team member after a task is handed in, by attributing one of the 
following three grades: 
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Grade 1: team member did their share of the work as agreed / default grade, if left blank. 
Grade 1/2: team member underperformed the agreed workload, to the point that other team 
members had to do some of their work in their stead. 
Grade 0:  team member did not contribute to the task, to the point that all their agreed workload had 
to be fulfilled by others. 
Individual grades are then computed according to the mode of the grades assigned by their team 
members, and these results in a multiplier of the original task grade for the group attributed after 
marking, so e.g. if a group task is given the mark 8.0 (over 10), but a majority of team members 
decide colleague X contributed only 1/2, then their effective grade for the task will be 4.0. The 
adoption of mode as a criterion, compared for instance with average, dilutes the effect of personal 
idiosyncrasies and occasional rivalries. Finally, other fractions could of course be allowed, but this 
might encourage students to overthink a reaction, which after all should be a last resort. In practice, 
reductions in effective grade have occurred very seldom, about once or twice in a semester, but 
students have reported that the possibility of evaluating their peers in fairness to their output is 
recomforting. 
5- Detailed description and findings from Tasks 1 to 5 

5.1- Task 1: Vertical analysis 
Groups examine a connected segment of about 40 pages from a given PNLD textbook, typically 
comprising two related sections. The analysis focuses on the intrinsic characteristics of the material, 
especially mathematical correctness, language, pedagogical approach, examples and nature of tasks 
proposed. 
There is very little technical bibliography on school textbook analysis by Brazilian authors. For this 
first task, students follow essentially the approach proposed by Lima et al. (2001), a former research 
mathematician and prolific author of higher education maths textbooks. The manipulation of the 
textbooks and the reading of chosen extracts from this theoretical reference support a classroom 
discussion about the main conceptual issues involved in the task. The key points raised typically 
include: 

• what ought to be the main axes of analysis: eg. mathematical rigour, language, layout, 
exercises etc. 

• which methodological criteria to adopt, i.e., what is a "good" or "bad" instance of each of 
the previously outlined axes; these are usually based on students' own past experiences both 
as pupils and teachers. 

• the issue of assessing exercise sections is more involved, and some specific discussion 
develops about what is an appropriate balance between direct manipulation and applications, 
with a recurrent emphasis on how to detect false contextualisation (problems whose 
narrative pretends to involve modelling whilst in practice disguising mere, and often 
implausible, manipulation). 

• the inevitability of reductionism: the dangers and responsibilities which any such analysis 
entails. 

Ensuing the discussion, groups gather and must formulate independently their own methodology, 
the outcome of which tends to be a mild variation on Lima et al.'s own assessment scheme, as seen 
above.  Each team member will then uniformly apply those methodological axes and criteria during 
homework, leading typically to the mapping and sorting of "faults" in the studied excerpt and some 
mild statistical exploration of the findings towards justifiable qualitative conclusions. Usually, this 
comes in the form of verdicts, for instance "definitions tend to be sloppy and exercises lack 
contextualisation" or "language tends to be excessively formal for a 5th grade text". Ideally such 
conclusions should be thought of as hypothetical constructive feedback for the textbook authors. 
In parallel, seeing as many students have no prior contact with LaTeX, the class takes a crash 
introduction, with the help of a teaching assistant. Their objective in this regard is to be able to 
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contribute autonomously to the group effort by providing their share of the analysis directly in 
LaTeX code, usually via some online platform like Overleaf or Sharelatex.  

5.2- Task 2: Horizontal analysis 
Groups compare segments of about 30 pages on the same topic, from two distinct PNLD textbooks. 
The goal now is to be able to justifiably choose a winner among the samples offered, regardless of 
their intrinsic merit. This task reflects upon a common school teacher experience, since each time a 
new PNLD list is published, every school must choose one collection to adopt based on samples 
sent by the approved printing houses, and our premise is that if any two options can be 
systematically compared, then upon finitely many comparisons teachers should be able to rank the 
whole list of samples and make a rational informed choice. 
Again, there is no ready-to-use bibliography by Brazilian authors to support this important decision. 
In some sense the only available source are the PNLD guidelines themselves, but then again the 
decision only takes place among nationally approved collections, hence, under the working 
assumption that the national assessment is minimally coherent, these guidelines are insufficient by 
definition. In practice, overworked teachers must make these choices at very short notice and with 
virtually no procedural guidance, so the process is exposed to anti-pedagogical criteria such as 
authority, tradition and personal idiosyncrasy. 
At Unicamp, we took therefore upon ourselves to establish the basic framework for a content-based 
comparison grid, which is perfected each year from previous iterations of the task. The main 
elements are: 

• An assessment grid is a point-based system which rewards relative good performance of a 
textbook over the other about each subtopic or content unit, corresponding roughly to one 
entry in the official syllabus (eg. sketch of the graph of a hyperbola, or distributivity of 
integer multiplication). 

• Subtopics are surveyed and divided into even and odd, according to whether they occur in 
both textbooks or in only one of them, respectively. 

• Even subtopics are compared in merit, based on some form of simplified "locally vertical" 
analysis, and at every instance the winner is awarded some points. 

• Odd subtopics are examined per se, and usually assessed as positive, irrelevant or 
detrimental, being accordingly rewarded or even sometimes punished with negative points. 

• A typical methodological pitfall lies in so-called false odds: topics which do occur on both 
textbooks, and therefore are even, but under such different pedagogical guises as to elicit a 
first impression of being different altogether. For instance, a subtopic may occur as opening 
motivation for the chapter on one book and as a side remark next to a theorem on the other, 
and they should be treated as even because in a way or another  the teacher can trust that the 
syllabus will be covered in that respect. The resolution and assessment of false odds tend to 
require quite a bit of interaction between the lecturer and individual groups, as well as some 
wider classroom sharing of controversial cases. 

• Another common pitfall is the temptation to produce two vertical analyses, thereby 
misplacing time and energy towards discussing the individual merits and shortcomings of 
each book, as opposed to sometimes frustrating actual task of choosing the least bad one. 
This impulse is understandable, since the students feel naturally inclined to apply the skills 
they just acquired in Task 1, and it must be constantly monitored by the lecturer during 
progress discussions. 

The standard satisfactory report plays out somewhat as a sports match, in which textbooks score or 
lose points until a winner emerges. The central point of this is the fact that the grid must be 
established before actual analysis occurs, so that assessment derives from universal values and 
consensual pedagogical decisions, rather than case-by-case subjective preference. As a 
counterweight, however, students are encouraged to make minor updates to their methodology 
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once, after the second week of the task, to accommodate totally unexpected phenomena and to 
exclude methodological expectations which did not materialise at all - hence have no purpose for 
comparison. 

5.3- Task 3: Foreign textbook analysis 
Students are made aware, in some cases apparently for the first time, that Mathematics is arguably 
the most universal of school subjects and that its teaching has been addressed from very different 
world views for centuries. This task consists in examining a 30-page section of a foreign textbook 
from our library's collection, with the sole and explicit goal of extracting good practices, both in 
content and in layout, which in their opinion constitute relative innovations and can be effectively 
applied to improve Brazilian textbooks. To state it clearly, it is an exercise in constructive 
plagiarism and technological catch up. 
Currently available materials are from Cuba, France, Japan (in Japanese), Russia (in English) and 
Spain, mostly obtained by donation from visiting faculty, postdocs etc over time.4 Clearly a 
preference is given by students to textbooks in Latin languages, which can be efficiently read by 
most, but some have ventured for instance into A. Givental's translation of the Russian classic5  
Kiselev’s Geometry (Kiselev 2008), yielding interesting results (see below). 
Groups are asked first of all to do some minor geographic research and establish a comparison 
between the education systems of the relevant country and Brazil, as well as broader 
socio-economic factors such as population and per capita income, Gini index, PISA scores and 
literacy rates. An interesting finding, for example, is that Spain is soundly comparable to São Paulo 
State in most of these variables, albeit teachers are much better paid, whereas Cuba has much fewer 
resources but relatively superior results. 
Here are some highlighted elements which emerged from this exercise over recent years: 

• French and Spanish textbooks tend to have a much more solid chapter and sectioning 
structure: sections begin with a recap and a statement of goals or skills to be developed, 
which is then matched by some form of progress assessment at the end. This may seem 
trivial to non-Brazilians but it is hardly ever correctly implemented, if it is to be found at all, 
in the Brazilian textbooks surveyed in this course.  

• Some Spanish textbooks tend to be explicit as to the difficulty of exercises, or to the specific 
skill being practiced, relative to the chapter's goals. This is usually done by some visual 
code involving colours or "difficulty bars"; students have found this to be a time-saver both 
for the teacher's lesson-planning and for the pupil's independent study.   

• Cuban books have relatively poor printing quality, but they tend to be very carefully 
adjusted to local reality: for instance, the first few sections in a 1st grade primary school 
textbook are strictly pictorial, since children are meanwhile learning how to read, and 
written text is gradually introduced along the book with increasingly complex grammar, so 
as to follow their progress in Spanish along the year. Students assert that this sort of 
interdisciplinary pedagogical integration is very different from standard practice in Brazilian 
primary schools. 

                                                                            
4 The reader is very much invited to send us donations from their own country, with our utmost gratitude. 
5 A. P. Kiselev (1852-1940) was the Russian and then Soviet writer of a hugely influential set of school 
textbooks, which were widely adopted in Russia and the USSR from 1892 to the mid 1970s, and also gave 
rise to adaptations in Eastern Europe and in China (Kiselev 2008, Translator’s foreword). His books on 
Euclidean geometry have a distinctively systematic yet practically-minded approach, with an emphasis on 
structured proof and ruler-and-compass construction. Indeed, “(d)uring the 1930s, these became accessible if 
not to all, then to almost all schoolchildren, and this is what brought Russian school mathematics its 
deserved fame. (…) Millions studied using Kiselev’s textbooks, and their proofs and arguments, their 
relatively complex transformations and algorithms, became accessible to millions. ” (Karp 2012, p. 408). 
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• Kiselev's 19th century pedagogy in geometry is mostly seen as a monstrosity by students' 
sensitive contemporary eyes. They argue that the emphasis on rigorous 
definition-theorem-proof structures and elaborate ruler-and-compass constructions (aimed at 
6th graders…) and the scarcity of contexualised examples are simply too distant from 
current canons in education to be applicable in the modern day classroom. However, one 
group has made a very interesting use of those features, by a clever and rather 
straightfoward adaptation of a sample section into a set of activity sheets for Geogebra 

• Although the assessment criteria in this task are necessarily more flexible, to account for the 
diversity of materials and outcomes, groups are already well-aware that the next task 
involves the production of original material, so they tend to take very seriously every hint 
that might give them a headstart in that near future. 

 

5.4- Task 4: Production of teaching material 
Students must apply the skills acquired in Tasks 1-3 into the original production of two sections of 
a hypothetical textbook, spanning over 20-40 pages, to a high standard of content and layout. While 
of course this is an opportunity to consolidate their conceptual achievements so far, the task is first 
and foremost an experience of the passive pole in criticism, a proficiency which tends to quickly 
hypertrophy in younger generations' analytical culture. Students report that wearing the author's 
shoes is a humbling experience, and that feeling just how hard it is to put their best into paper tends 
to inspire a certain benevolence toward textbooks they may have viciously denounced in Tasks 1 
and 2.   
Each group must choose two related topics, establish a pedagogical approach and create a LaTeX 
template accommodating all the structural elements required. In particular, they must create 
dedicated visual language to designate recaps, definitions, examples, curiosities, reminders etc. The 
A-standard for this material is both (i) to be visually indistinguishable from a commercially 
available textbook and (ii) to stand on its feet upon subsequent vertical analysis by the lecturer. 
Here are some of our systematic findings: 
• Seeing as the creation of a LaTeX template from scratch (or the major adaptation of 

something available online), as well as intense decision-making on the selection, phrasing 
and ordering of content, must happen within just over three weeks, it might seem that this 
measure is altogether unachievable. However, students tend to surpass all expectations and 
produce some really outstanding material. 

• Successful groups systematically apply lessons learned from foreign books in Task 3 and 
show a permanent concern not to incur in faults detected in Task 1. 

• Successful groups maximise their work capacity by assigning to the most LaTeX-savvy 
member an exclusively editorial role, essentially creating environments and visual resources 
upon request from the "contents team" and compiling together their contributions. 

• The least able or least motivated students tend to be assigned to online searching for useful 
images or to browsing existing textbooks for good exercises to borrow; in virtually no 
observed instances did any team member stand idle.   

• Only just about one group each year tends to decisively fail Task 4. 
We conclude with some highlighted Task 4 works from each of the course iterations; 
non-Portuguese speakers may still appreciate the layout and structure choices, as well as some 
elements of the pedagogical approach: 
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• 2014: http://www2.ime.unicamp.br/~ma225/2014Tarefa4-GrupoA.pdf  
This is a 5th grade chapter on Fractions, divided in the two sections Revision of fractions 
and Operations with fractions. It demonstrates careful planning of chapter structure, 
beginning with motivation and statement of goals and following, for each unit, the 
consistent expository pattern of content - example - practice. The text reflects considerable 
attention to the adequacy of written and visual language to that specific age group. 

• 2015: http://www2.ime.unicamp.br/~ma225/2015Tarefa4-GrupoB.pdf 
This is an 8th grade chapter on Proportions, divided in the two sections Proportionality and 
Thales' theorem. In this beautifully designed template, a particular pedagogical priority is 
placed on exercises, both as motivation and a posteriori practice, and their difficulty is 
highlighted to allow both teacher and student to gauge their planning and expectations. At 
the end of each section, a Summary page is included, just before the exercise sheets, and a 
Geogebra construction activity is proposed. At the end of the Chapter there is a selection of 
real questions appearing in Vestibular admissions exams across the country, and a card 
game is proposed. 

• 2016:  http://www2.ime.unicamp.br/~ma225/2016Tarefa4-GrupoC.pdf 
This is a High School 1st year chapter on quadratic polynomials, divided in the two sections 
Quadratic functions and Inequalities in degree 2. Although the template is less impressive 
than the previous two examples, this document reflects appropriately the level of 
mathematical formalism for this age group, and it reveals a deliberate pedagogical choice to 
motivate quadratic phenomena from the mechanics of sport, as opposed to say ballistics or 
stale "free-fall" physics situations. It also offers some graph-plotting activities on Geogebra. 

 
5.5- Task 5: Original contribution 
The final task of the course pushes for an independent initiative proposed by the groups themselves, 
according to two guiding approaches: (i) to extrapolate the immediate scope of the course, or (ii) 
produce a lasting contribution to further iterations of the course itself. Approach (i) has resulted for 
instance in the vertical analysis of a Physics textbook or the development of software modelling 
activities to complement an otherwise good textbook, while several interesting outcomes of (ii) are 
discussed below. Once the task is presented, groups must form a consensus around a proposal, 
which is then validated into a concrete project with the lecturer's input. The expectations and 
assessment criteria are then directly negotiated between each group and the lecturer. 
Task 5 seeks to stimulate initiative, independence, creativity and generosity to future generations of 
students and to wider society. These values are well-reflected in many contributions so far, of which 
we highlight the following: 
• The course website: http://www2.ime.unicamp.br/~ma225/ 
• The official webpage for the course was itself an outcome of Task 5 from the 2014 class, 

entirely designed and developed by the students themselves. 
• Course manual: aimed at facilitating future generations' assimilation of the course's rationale 

and goals, it includes an instructive description of each task, a specific section on LaTeX for 
textbook templates and a detailed report of the 2014 class experience from the students' 
perspective. 

• Slideshow: the actual big screen supporting material currently by the lecture, containing 
hyperlinks to the course's webpage, examples from previous years, standards for efficient 
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workshop dynamics during the class and standards for group communication and 
submission of tasks, among others.   

• LaTeX templates: a number of ready-to-use templates for the use of future groups in each of 
Tasks 1-4, accounting for subtleties such as age group-specific suggestions of visual 
resources etc. 

• Online games inventory: http://www2.ime.unicamp.br/~ma225/jogos/ 
• Conceived as an online support platform for teachers, this compendium of online games is 

organised according to the national curriculum, so that one can easily find links to online 
resources sorted by specific curriculum entry. Quality was a big concern, and a 
methodological decision was made to offer no link at all for a given topic if no 
pedagogically sound resource could be found for it. The idea of course is to be gradually 
expanded by future classes.   

Afterword 
We believe the findings of our qualitative analysis can contribute both to the theoretical field of 
Mathematics Textbook Analysis and to the practice of school teachers in a number of ways, based 
on our Brazilian experience. First, by establishing some systematic patterns to anchor the criticism 
and improvement of a given textbook. Second, by formulating methodological cues to support the 
decision-making process of teachers among a sample of alternative collections. Third, by 
highlighting the potential input of textbooks from different cultures and epochs, both in content and 
in layout, relative to the Brazilian standard. Fourth though not least, to corroborate the perception 
that future teachers, while still in-training, already display huge creative energy and, albeit not 
necessarily the strongest students in Higher Mathematics as such, can vastly outperform 
expectations when provided a collaborative and stimulating classroom environment. 
Finally, we hope this account may motivate similar experiences in other teacher-training 
institutions, which can then be compared and evolve together into a core set of good practices to be 
adopted, in various guises, on an international scale. 
 

References 
Borba, Rute & Ana Selva. 2013. "Analysis of the role of the calculator in Brazilian textbooks". 

ZDM Mathematics Education, 45(5), 737-750. 

Brasil. 2012. Programa Nacional do Livro Didático (PNLD). Ministério da Educação. Available at: 
http://portal.mec.gov.br/index.php?Itemid=668&id=12391&option=com_content&view=article. 
Accessed: 20 Oct. 2012. 

Brasil. 2014. Pró-letramento – Apresentação. Ministério da Educação. Available at: 
http://portal.mec.gov.br/index.php?option=com_content&view=article&id=12346&Itemid=698. 
Accessed: 04 Feb. 2014. 

Kiselev, Andrei P. 2008. Kiselev’s Geometry. Books I and II. Adapted from Russian by Alexander 
Givental. El Cerrito, Calif.: Sumizdat. 

Lima, Elon et al. 2001. Exame de Textos: Análise de livros de Matemática para o Ensino Médio. 
VITAE/IMPA/SBM. 

Mazzi, Lucas C. & Rúbia B. Amaral. 2017. Brazil’s mathematics textbooks: an overview of the 
government politicies. In: II International Conference on Mathematics Textbook Research and 
Development (ICMT II). Proceedings of ICMT II. Rio de Janeiro, Brazil. 

Rosa, Carine P., Lizemara C. Ribas & Milene Barazzutti. 2012. “Análise de livros didáticos”. In: 
Anais do Encontro Nacional Pibid-Matemática. Farroupilha, Brazil. 



 Sa Earp and Amaral 

 294 

Salla, F. 2012. "PNLD 2013: como escolher livros com critério". Nova escola. April 2012. 

Valverde, Gilbert A., Leonard J. Bianchi, Richard G. Wolfe Willian H. Schmidt, & Richard T 
Houang. 2002.  According to the book: using TIMSS to investigate the translation of policy into 
practice through the world of textbooks. Dordrecht: Kluwer.  

 

 
 



 

 
Olaug Ellen Lona Svingen 
Norwegian Centre for Mathematics Education, Trondheim (Norway) 
olaug.svingeen@mathematikksenteret.no 
 
Camilla Normann Justnes 
Norwegian Centre for Mathematics Education, Trondheim (Norway) 
Camilla.justnes@mathematikksenteret.no 
 
Gert Schubring, Lianghuo Fan, Victor Giraldo (eds.): Proceedings of the Second International Conference on 
Mathematics Textbook Research and Development. Rio de Janeiro: Instituto de Matemática, Universidade 
Federal do Rio de Janeiro, 2018. 

NORWEGIAN TEACHERS’ USE OF RESOURCES FOR 
PLANNING INSTRUCTION IN MATHEMATICS  

OLAUG ELLEN LONA SVINGEN and CAMILLA NORMANN JUSTNES  
Abstract  
This paper presents findings from two master theses about seven Norwegian teachers’ use of 
resources before, during and after instruction in mathematics in Norway. Although the teachers had 
a range of resources available, it was found in both thesis that all teachers almost exclusively used 
the curriculum material available at their school, the teacher’s guide in particular. However, it was 
also found that the teachers who had participated in professional development were less dependent 
of the teacher guide. Teachers who attended professional development tended to use the curriculum 
objectives in the national curriculum as a starting point rather than the teacher guide and included 
other resources in their planning.  
Key words: teacher’s guides, curriculum material, curriculum material use, curriculum material 
affordances, professional development. 
Introduction  
Design and distribution of curriculum material is one of the oldest strategies to influence what takes 
place in the classroom (Ball & Cohen 1996; Davis & Krajcik 2005). In Norway, teachers can freely 
decide if, which and how much, they use curriculum materials and other resources. There is a strong 
tradition of using curriculum materials published by commercial publishers. The curriculum 
material is often a package that typically consists of a student textbook including exercises, a 
teacher guide, and web-resources of various kinds including, but not limited to, exercises, games, 
tests and films. Thus, this material potentially has a great impact on instruction in Norwegian 
classrooms.  
Currently there is no national quality assessment of published curriculum materials in Norway. 
After 100 years with a national quality assurance of published curriculum materials, the government 
decided to abolish the system with quality assurance in the year 2000. There were two main 
arguments for this decision. First, parents and students should have stronger influence on choice 
and use of curriculum material in schools. Second the national curriculum should be the main 
political management tool to decide the content in instruction (Bratholm 2001). This puts a large 
personal responsibility on the teacher to develop their lessons in order to reach the competence 
objectives in the national curriculum. However, many teachers still continue to lean too much on 
curriculum materials to achieve the competence objectives in appropriate ways (Grave & Pepin 
2017). The lack of national quality assurance of published curriculum material was one of the 
reasons that led to this investigation about what kind of resources teachers use and how they use 
them. This paper reports from two case-studies including seven teachers in upper primary school in 
Norway. 
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Literature review 

Teachers working with resources 
Resources in mathematics plays an important role in pupils’ and teachers’ environment. Over the 
past three decades there have been a considerable amount of research about curriculum materials 
and resources in mathematics teaching (Adler 2000; Remillard 2005). It was looked at resources in 
a wide perspective: curriculum materials including other text resources, ICT and human resources 
(Adler 2000; Gueudet, Pepin & Trouche 2012). In this paper the focus is on the teacher’s use of 
curriculum material. 
Teachers notice and use curriculum material differently, depending on their experience, intention 
and competence. Teachers and resources influence one another (Brown 2009; Remillard 2011). 
Looking at how teachers use curriculum material to achieve teaching objectives, The Design 
Capacity for Enactment framework (DCE) is relevant. In this relationship, teaching is design, where 
the teacher designs lessons in the classroom by modifying existing material or integrating new 
material. The teachers’ ability to perceive and mobilize the pedagogical ideas that are embedded, 
Brown (2009) calls pedagogical design capacity. This approach identifies three different ways of 
teachers work with the curriculum resource: the teachers adapts, offloads and/or improvises with 
the material to adjust it to their teaching (Brown 2009). When teachers offload, they follow the 
curriculum material slavishly. When adapting, they make some changes related to their own 
experiences. Finally, if they improvise, they use their own strategies and the connection to the 
curriculum material becomes vague. Who the teacher is as a reader, influences what and how they 
read. Remillard (2011) describes different ways we can look at the teacher as a reader. We can look 
at why, what and when the teachers read and who they are as readers. Teachers participating in PD, 
gain new experiences and competence and can potentially change the ways they interact with their 
resources. Thus, resources can play an important role in teachers’ professional development. 
Teachers professional development, PD   
In Norway there is an increasing interest in developing mathematic teachers’ knowledge for 
teaching. This can be seen in both: the big national strategy called “Competence creates quality - 
Strategy for continuing education for teachers and school leaders until 2025”; by the Ministry of 
education and research (Kunnskapsdepartementet 2015), and in smaller and local PD-projects and 
innovations on municipality level and at school level.  
The ultimate goal of professional development is improving students’ learning through the 
mechanism of improving instruction (Doerr, Goldsmith & Lewis 2010). The design of PD can be 
influenced by research from both empirical studies and small scale qualitative studies.  
The research on professional development suggests that mathematics professional development is 
effective when it promotes mathematics teachers' growth in four major areas. 
• 1. Builds teachers' mathematical knowledge and their capacity to use it in practice, 
• 2. Builds teachers' capacity to notice, analyze, and respond to students' thinking 
• 3. Builds teachers' productive habits of mind, and 
• 4. Builds collegial relationships and structures that support continued learning. 

In addition, research suggests that three broad features of professional development support these 
goals. 
• 1. Substantial time investment, 
• 2. Systemic support, and 
• 3. Opportunities for active learning (Doerr, Goldsmith & Lewis 2010) 

Our research 
The research presented in this paper tries to answer the following questions: 
• 1. How do teachers use curriculum materials available at their school?  
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• 2. In which way are the teachers’ use of these curriculum material influenced by 
professional development?  

In answer to these research questions; the findings from two master theses during 2012 and 2013 
(Justnes 2013; Svingen 2014) were looked at. The data was collected from seven teachers from 
three different upper primary schools in Norway. All seven teachers used one of the two most 
dominant curriculum materials available in Norway, at the time. All teachers were interviewed 
about which resources they used, when and how they used them, and about their rationale for their 
choice of resources. The teacher’s private notes for planning and observation of their classroom 
teaching was also collected.  
Since Justnes’s study aimed to explore how the teachers’ use of resources developed, she conducted 
her data collection twice, before the teachers attended PD and four months into the PD-program. 
The data collection was a combination of interviews where the participants made a schematic 
representation of resource system (SRRS), observation of both planning and teaching, and collection 
of the teachers notes. These notes included private notes; they made while planning their teaching; 
notes to communicate their plan to each other, and notes to communicate plans to the parents and 
pupils (extended schedule/work plan/timetable).   
Svingen’s study went on to analyse the teacher’s guides involved and conducted a document 
analysis in addition. The categories from the document analysis was used as a framework on how 
the curriculum material contributed to the teacher’s practice. Svingen further set up a case study to 
answer how the teachers used the curriculum material before, during and after instruction. The data 
collection was a combination of semi-structured interviews and structured observation of three 
teachers.  
The first findings from the two case studies will be presented separately. 
Short presentation of the main findings in the two case studies in question 

Case study 1 – Mathematics teachers work with resources, Justnes (2013) 
The research question for this study was: How will four teachers develop, in terms of resources, 
while attending professional development?  

SRRS Teacher 1 before PD: 

 

SRRS Teacher 1 during PD: 

 

The main findings from Justnes: 
1)	A	wider	definition	of	resources.	 
The analysis showed that all the teachers perceived the curriculum material and the teachers-guide 
as their main resource before they started their PD. The teachers defined the resources they used 
more broadly after four months in their PD. They included their own experiences and the other 
members of the staff/team, as a resource. The teachers had started to plan more of the content 
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together as a teacher-team, the teachers then perceived themselves, as more confident in their role, 
as mathematics teachers. Hence their work with their resources was perceived as less individual. 

2) Strengthened	capacity	to	noticing	pupils	thinking. 
Before the PD-program started, none of the teachers talked about the pupils as resources. Four 
months into the PD-program, the teachers also included pupils as a part of their resource system. 
They both perceived pupils as resources for each other, and for planning further instruction. The 
teachers claimed stronger focus on noticing pupils’ strategies and understanding, and this 
influenced their planning of instruction more than before or instead of the “pace” proposed in the 
teacher guide. A growth indicator in noticing is according to Jacobs, Lamb, and Philipp (2010) a 
shift from being ruled by the progression in the textbook to students' current understanding. 
Teaching based on the analysis of students' understanding is in other research related to the 
improvement of pupils learning opportunities (Jacobs, Lamb & Philipp 2010). 

3) Development	of	community	of	practice	
Justnes found that they ways the teachers started to work together can be described as the 
development of a community of practice. Communities of practice are groups of people who share a 
concern or a passion for something they do, and learn how to do it better as they interact regularly 
(Wenger 2008). This includes mutual engagement, a joint enterprise, and the development of a 
shared repertoire, which Justnes found evidence for in the material. 

4) Support	for	development	
According to NCTM support from the system is important for professional development. Both time 
and opportunity to meet, are important factors that enable PD (Doerr, Goldsmith & Lewis 2010). 
Based on the previously mentioned findings from this study; we argue that facilities must be offered 
so that teachers can develop communities of practice to support teachers' development of a 
productive mindset, since this is a mechanism that contributes to improved teaching in 
mathematics.  
 

Case study 2 – Analysis of two teacher’s guides – characteristics and teachers use of them - 
Svingen (2014) 
The research questions for this study were: When studying the teacher’s guide in two different 
curriculum materials, what characteristics are there? How do the teachers use the teacher’s guide 
when they are; planning, carrying out and evaluating instruction? 
The main findings from Svingen’s study were:  
1) Characteristic	of	the	teacher’s	guides	and	how	they	are	used	
The two teacher’s guides differed in three ways. The first was related to user-friendliness. That was 
dependent of how easy it was to bring the teacher’s guide in the classroom and in which way it was 
easy to get an overview of both; the content in the pupil’s textbook and of the support the teacher 
could use in instruction. The second characteristic was about what view of mathematics the 
teacher’s guide promoted. One supported an instrumental understanding of mathematics, while the 
second emphasized more relational understanding of mathematics. The third characteristic was 
related to differentiation. One supported differentiation where the students move forward, where the 
other one gave examples of how the students could work in depth with the same topic as their 
classmates. User-friendliness was an important factor in which way the teachers used the teacher 
guide. The one teacher guide which was huge and gave little support, was used only to copy an 
overview of what tasks the student should work with on different levels. The teachers used the 
textbook instead to plan instruction.  
2) The	importance	of	curriculum	material	
The three teachers in this study, used either the teacher guide or the textbook as their main resource 
before and during instruction. They used a few other resources. Two of the teachers used continuing 
education and training, they had participated in as a resource in their planning 
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3) The	potential	in	the	teacher’s	guide	
The main purpose for the teacher’s guide, is to support teachers in planning instruction and during 
instruction. The characteristics of the teacher’s guide; can tell us something about what kind of 
support the teachers get and what kind of instruction the teacher guide promotes. A characteristic 
which was in common for the two-teacher’s guide, was the transparency. If the teacher guide is 
transparent, rationale for decisions are made visible and it’s easier for teachers to interact with the 
content in an appropriate way. In what way are the goals for the lesson explained? How are the 
mathematical concepts explained? Is the rationale for why activities are important explained? Will 
the teachers get some support in which way different topics are related to each other? The findings 
in the analysis of the two teacher’s guides, show that both of them were not transparent. They gave 
little support to the teachers in the decision-making process.  
4) Use	of	the	analytic	scheme	for	the	teacher’s	guide 
The development of the analytic scheme for the analysis of the teacher’s guide; gave insight in both 
qualities in the teacher’s guide, but also what happened in the classroom. The instruction is a 
complex situation; and to look at instruction through the analytic approach to the teacher’s guide, 
gave new insight in where it is important that the teacher’s guide supports the teachers.  
Results and discussion 
All though the original research, questions in these two master theses were different, several of the 
findings are related to one another, and this paper will report on these findings.  

Result 1: Teachers depend heavily on the curriculum material available at their schools 
Both studies found that the curriculum material is the main source for the teachers in planning 
instruction, despite that other resources are available. The first SRRS and interviews from Justnes’s 
study showed that the teacher’s guide is the starting point for further planning for the four teachers 
in this study. Hence, the teacher’s guide determines both topic, pace, classroom activity and tasks, 
which Brown (2009) calls offloading. Svingen’s study also showed that the curriculum material was 
the most dominant resource for their planning. This is in line with other research, which also finds 
that curriculum material is the primary source for mathematics teachers; and also legitimate and 
decide content; and how the content is sequenced (Freeman & Porter 1989; Robitaille & Travers 
1992; Pepin & Haggarty 2001).     
However, the teachers in question used the curriculum material in different ways. In curriculum 
material where the teacher’s guide gave little support for the teachers, they used the pupil’s 
textbook instead. In planning, the teachers decided which examples from the textbook they should 
use and what tasks the pupils should work with. They were offloading the textbook. Teachers who 
used curriculum material that gave suggestions on what they could do in instruction, followed the 
suggestions in the teacher’s guide and offloaded the teacher’s guide. 

Result 2: PD influenced teachers’ perception and use of resources 
One of the findings in Justnes’s study was that the teachers mainly perceived the resources available 
at their school, as their resources before they started PD. This included curriculum material, but also 
their own experience as teachers and for some of them, their colleagues. The decisions for teaching 
was mainly based on the suggestions from the teacher’s guide in the curriculum material, however 
influenced in various degrees by their own experience and sometimes by input from other teachers. 
Their planning practice was individual.  
After four months the teachers also included the PD-course, or elements from it, and input from 
pupils as a part of their resource system. The teachers reported that they perceived themselves as 
less dependent on the curriculum material in their planning. They planned for more open tasks and 
group work for their pupils, which had been a part of the focus in the PD-course. This led them to 
search for tasks and content from other resources than the curriculum material. Because of the 
increase in group work, the pupils were able to participate in plenary discussions and oral 



 Svingen and Justnes 

 300 

communication with each other in greater extent. This gave the teachers opportunity to listen more 
carefully to pupils’ mathematical thinking and take this in account in their further planning. Hence, 
they included pupils in their resource system.     
The PD-course	 led the teachers to meet regularly and discuss their mutual goal of increasing 
inquiry-based learning in their mathematics teaching. The teachers reported, and observations 
showed, more cooperation and joint work with their resources, and development of a joint 
repertoire of resources and teaching methods.  
Similar findings come from Svingen’s study; where we found that teachers with continuing 
education and training added knowledge from their education into the planning of instruction. One 
of the teachers participated in continuing education in assessment for learning. She added some 
activities that made the pupils’ learning and thinking more visible than the curriculum material 
prepared them for. She referred directly to the education as a resource in her planning.  
Discussion and concluding remarks  
Both studies found that the curriculum material is important for the teachers planning, despite that 
other resources are available. However, the teachers in question used them in different ways. The 
first SRRS and interviews from Justnes’s study showed that the teacher’s guide is the starting point 
for further planning for the four teachers in this study. Svingen’s study looked at the use of 
teacher’s guides closer and found that the participating teachers were looking for different aspects 
to use for their planning. They were, in particular, looking for three aspects; how to deal with the 
competence objectives in the national curriculum, differentiation and to expand their repertoire of 
teaching strategies. Looking back into the data in Justnes’s study, this is connected to the changes in 
teachers use when they joined the PD-course. After they started their PD-course, they had another 
starting point than the teacher’s guide when planning instruction. The new starting point for their 
planning was the national curriculum objectives and the pupils’ responses from last lesson. The 
PD-course contributed to more cooperation between the teachers where they discussed both 
curriculum objectives, teaching strategies and how to meet different pupils reasoning.   
Even though we found that the professional development course under consideration had an impact 
on the teachers´ flexibility in choosing and using recourses; it should be noted that participation in 
PD is not systematic in Norway and varies between schools and districts. Hence, many teachers are 
left with the curriculum material as their main resource for teaching. This puts the curriculum 
material in position to provide professional development for teachers in Norway. But that makes 
some demands on the curriculum material and, in particular, the teacher’s guide. The two teacher 
guides under examination in this study were not transparent. They gave the teachers few 
possibilities to take part in the decision-making process. As long as the teacher’s guide does not 
make the rationale for decisions transparent, it will be hard for the teachers to interact with the 
content in a productive way. As shown in Justnes’s study, the PD-course made the teacher more 
flexible in how they interacted with the teacher’s guide. It might be explained by the teachers’ 
growth; in mathematical knowledge; capacity to notice, analyse and to respond to pupils thinking; 
build productive habits of mind and build collegial relationship (Doerr, Goldsmith, and Lewis 
2010). They had increased their ability to take part in the decision-making process together. The 
PD-course compensated for the lack of transparency in the teacher’s guide.  
There is a potential for improving instruction through curriculum material, since it is accessible for 
teachers in an easy way. A keyword is transparency. The rationale for choices, needs to be 
expressed explicitly. But there is one main limitation, the teacher’s guide cannot compensate for a 
collegial relationship, where teachers discuss and develop their understanding for instruction, the 
power of working with colleagues. 
There are several limitations in small studies, which have a small number of teachers and are 
carried out in a short time span. Nevertheless, there are findings in the two studies which can 
contribute to a deeper understanding of how professional development and curriculum material can 
improve instruction and further improve students’ learning.  
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ENEM AND MATHEMATICS TEXTBOOKS FOR HIGH 
SCHOOL: AN ANALYSIS OF THE VOLUME OF GEOMETRIC 

SOLIDS 
KATY WELLEN MENESES LEÃO, ROSILÂNGELA LUCENA and VERÔNICA 
GITIRANA 
Abstract 
Each year, Brazilian students undertake the National High School Exam (ENEM), aiming to enter 
university. Textbooks play a significant role for students’ development. So, we consider that there 
should exist compatibility between mathematics textbook proposals and the mathematical knowledge 
required in ENEM. An analysis of this compatibility was undertaken regarding the content of 
volume. The Anthropological Theory of Didactics was used to analyze tasks and techniques involved 
to correctly solve each task in the last six editions of ENEM and in a Brazilian Mathematics textbook 
collection for high school. The results showed that most contents and abilities required to solve 
ENEM questions of volume were found in the textbook’s approach. However, differently from ENEM 
questions, the textbook approach rarely correlates them to another field of knowledge, as well as to 
contents from other blocks of school mathematics, such as to proportion and to percentage.  
Keywords: Textbook, Volume, Anthropological Theory of Didactics, ENEM 
Introduction 
ENEM, Exame Nacional do Ensino Médio, is a Brazilian evaluation test for high school students 
created in 1998 by the Ministry of Education. Many state and private universities use their results as 
a way of selecting students to their courses. Since 2009, when ENEM results began to be adopted 
by state universities in their admission process, there has been a collective mobilization to think 
about the compatibility between school teaching and the content required in ENEM. The National 
Exam contains contextualized questions, related to several areas of knowledge. We start from the 
point of view that School approach to a content and any evaluation test should have compatibility. 
Textbooks, are one of the most used resources in classes, thus its approach and the ENEM should 
be compatible.  
Our focus is on the block of school mathematics - magnitudes and measures -, more specifically on 
the magnitude volume, aiming to answer the following questions: (A) which tasks involving the 
magnitude volume are proposed in ENEM questions? (B) Which techniques are required to solve 
ENEM questions? and (C) Are these tasks and techniques addressed in textbooks? 
This paper discusses part of a research that aims to investigate the compatibility between the 
knowledge required by ENEM tests and the textbook approach. For this, we analyzed six editions 
of the exam, applied in the years 2011 to 2015, concerning the questions involving the concept of 
volume, and a collection of Brazilian textbooks that were the most distributed in state schools by 
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PNLD 2015 (Brasil 2014) - a national distribution program of textbooks, which also evaluates the 
textbooks to be chosen from a guide by the teachers. 
Theoretical Framework 
In this section, we will discuss the Anthropological Theory of Didactics (Chevallard 1999) which 
composes our theoretical framework. We also found the concept of volume and its perspective as 
magnitude, according to the didactic hypothesis of Douady and Perrin-Glorian (1989), seeking to 
reveal the importance of its treatment within the magnitudes and measures cadres. 
Anthropological Theory of Didactics 
In this work, we seek to understand the Chevallard (1999) proposition of the Anthropological 
Theory of Didactics - ATD. In theory, the Praxis of didactic organizations and mathematical 
organizations in relation to the knowledge enable us to analyze concepts, procedures, and 
algorithms used in the accomplishment of a certain task. For Chevallard (1999), "mathematical 
organization is the study of the mathematical activities that are proposed by the institution and the 
didactic organization refers to the way the study is made around the mathematical organization" 
(Freitas 2014, 4). 
According to Chevallard (1998 apud Santos & Menezes 2015, 649), "an ATD must be faced as a 
development and an articulation of the notions, the elaboration of which aims to allow thinking in a 
unified way a great number of didactic phenomena, that arise at the end of multiple analysis". ATD 
offers us a methodological apparatus for the study of several facets of Didactics process that takes 
place in the classroom, such as didactic contract, time management and didactic transposition. 
The ATD defends that practical and theoretical elements that conduct human action can be 
described according to a praxeological organization, involving a task, T, which is performed by 
means of a technique, τ, thus justified by means of a technology, θ, and then, such technology is 
justified by a theory, Θ. This block is what we call the praxeological organization [T, τ, θ, Θ]. 
Chevallard (1998, p 2) states about the task, T: "Specifically, a kind of task exists only in the form 
of different types of tasks, the content of which is narrowly specified. Calculating ... is a kind of 
task". According to Chevallard (1998, 2, our translation), "A praxeology relative to T specifies (in 
principle) a way to accomplish, to perform the tasks t ∈ T: to such a way of doing, τ, we give here 
the name of technique". A set of tasks and techniques is called the practical-technical block [T, τ], 
the know-how block. This set of elements needs a theoretical fundament that bases it, a set of 
elements that theoretically justifies such techniques. One of these elements is called technology, θ, 
where it presents itself as a rational discourse on the technique τ, a theoretical justification of the 
techniques used, usually by a demonstration. The other element that underlies the practical technical 
block is called theory, Θ, which is the most elementary mathematical concept that conceptually 
supports technology.  

In turn, technological discourse contains assertions, more or less explicit, in which reason can be 
applied. We then move on to a higher level of justification-explanation-production, than of 
theory, Θ, which takes up the role of technology regarding technique. (Chevallard 1998, 4, our 
translation).  

The set of technology and theory forms a block called technological-theoretical block, [θ, Θ], the 
block of knowledge, representing the knowledge that was implicitly used to solve a problem. 
In this research, we are interested in the practical-theoretical block of praxeological organizations. 
We will use the practical-technical block [T, τ] that gives us support to identify and analyze tasks, 
T, and techniques, τ, in ENEM and textbook questions, besides the practical block, that justifies the 
techniques, τ, applied in the resolution of the tasks, T, related to the volume concept of geometric 
solids. Our perspective is to verify the compatibility between the volume of solid approach in the 
textbook and the skills required to solve ENEM questions. 
Volume of Geometric Solids 
By volume of solid, we have a definition by Moise (1990, 352): 
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Given V a class of measurable sets in space, there exists v: V → R - a function in real positives 
such as if M ∈ V, v(M) is called volume of M, where measurable sets are the sets in which we 
can associate a measure with its elements. We will call the elements V of solids. Following the 
definition of volume above, every solid that has volume needs to satisfy the following properties: 

• Being a convex solid every solid the line of which that connects any two points of its interior 
is entirely contained in it, all convex solid has volume;  

• The union, intercession, and difference of solids have volume;  
• If a solid M is bigger than a solid N, the volume of M will be bigger than the volume of N  
• If the volume of the intersection of two solids is empty, the volume of their union is the volume 

of each separately; 
• If M is a parallelepiped of base b and height h, the volume of M is b h; 
• If M and N are solids in space and α0 and α1 are parallel planes, being any measurable 

cross-section, where transversal cuts are the intercession of M and α0 and the intercession of 
N and α1, and the transverse cuts have equal two by two sizes, then M and N have the same 
volume.   

The definition presented for volume of a solid reveals aspects of a concept studied in geometry. 
Today, the concept is considered one of the geometric magnitudes, within the magnitudes and 
measures block of school mathematics. As Lima and Carvalho (2010, 136, our translation) affirm, 
one of the reasons for this change comes from the "need of a greater attention when teaching the 
concept of magnitude in general, not limited to geometric magnitudes, being relevant to its study 
the comprehension, measurement, and representation". 
The concept of volume as magnitude comes from the adaptation of didactic hypothesis derived 
from research developed by Regine Douady and Marie-Jeanne Perrin-Glorian (Douady & 
Perrin-Glorian 1989), which distinguishes three frames for comprehension of area as a magnitude: 
geometric frame, magnitude frame, and numeric frame, as affirmed by Figueiredo, Bellemain and 
Teles, (2012, 2). 
In these frames (Figure 1) are inserted mathematical objects, their relations, formulations and 
mental images that the subject associates to the objects at that moment. 

Figure 1: Didactic model of frames representation. Adapted from Douady and Perrin-Glorian (1989) 
In the geometric frame are presented plane surfaces of mathematical objects. By adapting the 
concept of volume, we can describe how objects have volume in the physical world. The numeric 
frame refers to the actual values that the volume can have, being a non-negative real value. The 
magnitude frame is the proper notion of volume and can be classified as being the equivalent class 
of figures with the same volume. One of the reasons to differentiate magnitudes and geometric 
objects is that each object can be observed in several ways, including several magnitudes. A cube 
can be analyzed according to its volume, the length of its edge, its main diagonal, the diagonal of 
one of its faces or the area of their faces. 
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Review of the Literature 
In this section, we will discuss the importance of the study of volume in the magnitude frame and 
its approach in the textbook, discussing some relevant aspects, according to research carried out on 
the theme in focus. 
The way the magnitude volume is presented in Brazilian textbooks has changed over the years, as 
affirmed by Bellemain and Lima (2010, 167): “We noticed, for example, that concepts related to 
this field are more articulated than other mathematical contents, and, when treated separately, that is 
done in chapters distributed along the textbook, and not left to an isolated section of each book, 
usually at its end.” 
Morais (2012) affirms that in ENEM tests, the use of formulas relating to other aspects of the 
volume concept is overmuch prioritized, when the use of formulas alone does not support the 
transition between numerical and magnitudes frames. “Therefore, they are important tools for 
resolving volume problems. but it is worth noting that their use doesn't affect the comprehension of 
the concept, since it differs from magnitude.” (Morais 2012, 43) 
This author, in his analysis of the volume concept in textbooks, observed that in most of the 7 
collections approved by the 2012 PNLD for high school, approximately 93% of activities were 
about measurement. The author considers that the questions in which it is necessary to assign a 
numerical value to volume, by either using formulas, composition and decomposition or Cavalieri 
Principle, can influence the student to understand only the numerical aspect of the volume concept. 
On the frame of geometric magnitude, his study becomes of fundamental importance because: 

[...] geometric magnitudes reveal themselves as complex conceptual fields, where deeper 
analysis is required in order to understand the learning difficulties of the students, intervene in a 
relevant manner and favor the establishment of articulations between multiple possible 
conceptions of concepts related to magnitude. (Bellemain & Lima 2002, apud Brito 2003, 31, 
our translation) 

It is also important to emphasize that geometric magnitudes were previously studied in the field of 
geometry, where only numerical value and volume properties were treated. One of the biggest 
problems in the study of this magnitude is the non-differentiation between measure, magnitude and 
geometric object, as "students have little knowledge of volume as magnitude, they change it either 
to solid, or to number" (Morais 2010, 2, our translation). Morais emphasizes another confusion, 
already discussed in Bellemain and Lima (2002) that refers to the necessary differentiation between 
the geometric object and the physical object. A dice, for example, is a physical object that 
geometrically can be modeled by the geometric object called "Cube". 
Another point to be considered, as Figueiredo, Bellemain and Teles (2012, 2) affirm, is that "the 
content has social meaning and, because of that, it becomes the school’s responsibility to promote 
students’ development of skills and competencies regarding volume". 
Methodological Path 
Initially, to map the task types that appear in mathematics questions of ENEM tests related to the 
volume concept of a geometric solid, we delimited the data collection to ENEM tests applied from 
2011 to 2015. In a first mapping of the questions, we identified questions related to the concept, 
properties and geometric solids of volume. 
After mapping the questions that involve the concept of volume, to analyze the tasks presented in 
these questions and possible techniques to obtain correct solution, the questions were solved. In this 
process, we seeked to use different strategies to solve all the mapped questions, in a process of 
theoretical analysis. On the basis of the Anthropological Theory of Didactics - ATD (Chevallard, 
1999), we sought to classify the questions looking at the tasks involved in them. Many of these 
questions had an interdisciplinary feature, articulating the concepts of volume with others, such as 
proportion and percentage. Our expectation about this mapping consisted in having a quantitative 
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and qualitative panorama regarding the questions exploring geometric solids volume and to the task 
types and techniques classified from the mapped questions. 
Analysis Results 
The analysis structure reveals a mapping of the ENEM questions, regarding magnitude and 
measurements. Among these, only those that dealt with geometric volume magnitudes were 
selected and grouped according to the techniques of resolution required. Such classification allowed 
us to group the questions identified in the textbooks related to volume, allowing a comparative 
analysis of the data.  
Classification of ENEM questions 
The six ENEM tests contained 77 questions, out of a 270 total, that dealt with magnitudes and 
measurements, 16 dealing with the volume of solids.  
All the questions about volume from ENEM tests had, as the correct answer, to find a measurement, 
what shows the privilege of the numeric frame. In a first glance, we could think of a simple 
categorization of all the question involving the calculation of volume. However, a deeper analysis 
shows differences. Some started from the volume to obtain one length of the solid, as a problem of 
inversion, while others required different tasks in their resolutions. Thus, some criteria were taken 
to assist with the mapping of the multiplicity of tasks involved in each question. Some of the 
criteria also involves techniques and other questions involve contents of other mathematics blocks 
of school mathematics:  
• (FV) Use of a volume formula: questions that involve calculating the volume using the 

lengths of a solid by the use a volume formula – in which we observe the passage from the 
geometric frame to the numeric frame. 

• (CV) Composition and decomposition of volume: questions that involve operations with 
volumes, disjoint or not, such as adding or subtracting. Such operation deal from geometric 
to magnitude frames. It can be observed that the union of solids belongs in the geometric 
frame and the operations of volume, in the magnitude frame. 

• (TU) Transformation of units: questions that require students to transform units of measure, 
volume, capacity, or length.  

• (PC) Use of the Principle of Cavalieri: questions in which the used formula is not easy to 
see. It is necessary to compare the area of sections of distinct solids in order to calculate 
their volume.  

• (PO) Use of percentage: questions that require the use of percentage. 
• (P) Use of proportionality: questions that involve the concept of proportionality and/or ratio 

of proportionality. 
• (MC) Use of multiplicative comparison: questions in which comparison between volumes is 

required, by analyzing the increasing or reduction of the volume through the multiplication 
of its edges by a number different from zero. 

• (AC) Use of additive comparison: question which involve the use of an additive comparison 
of measures. 

• (PS) Produce a new solid by visualization corresponding to a new measurement given. 
• (FA) Formula of area - questions which involve calculating the area of a figure. 
• (PG) Identification between physical objects and geometric models - questions which 

involve the identification of a geometric model given a physical object. 
 

Group Criteria Sub-tasks involved Total 
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1 FV - TU - P 

(A) Calculate volume given radius and diameter; 
(B) Transform the unit of measure from cm3 to mL; 

(C) Calculate volume given ratio of proportionality and total 
volume.  

1 

2 FV - CV 

(D) Decompose/compose the volume of a solid; 
(A) Calculate the volume of each solid decomposed given its 

lengths; 
(E) Calculate one length of a solid given its volume. 

3 

3 FV - AC - PS 

(F) Produce (by visualization) a new solid corresponding to a 
new given measurement; 

(E) Calculate one length of a solid given its volume; 
(G) Determine the additive relation between lengths. 

1 

4 
PG - FV - FA –  

TU - PC - P 

(H) Identify correspondence between the measure of a physical 
object and the geometric models; 

(I) Calculate the value of comparative relation between the 
measurement of the trapeze bases in a situation of simple 

proportionality; 
(J) Calculate a measurement, given the comparative relation and 

the compared measure; 
(A) Calculate the area of a figure; 

(K) Calculate the volume of a solid; 
(B) Transform the unit of volume. 

1 

5 FV - PO 

(L) Calculate the length of a solid by increasing percentage; 
(A) Calculate the volume of a solid given its lengths; 
(E) Calculate the lengths given the volume of a solid; 
(M) Calculate increasing percentage of measurements. 

4 

6 FV - CM 
(A) Calculate the volume of a solid given its lengths; 

(E) Calculate lengths given the volume of a solid; 
(N) Compare volumes or measurements. 

3 

7 P - CM 
(O) Compare volumes given the ratio of proportionality between 

lengths; 
(C) Calculate the length given the ratio of proportionality. 

3 

Table 1: Classification of the questions from ENEM (adapted from Leão 2017, 25) 
Each question was classified considering if it involved or not one of the seven aspects above. We 
also analyzed in which questions it was necessary to visualize the solid, with the drawing of the 
solid or not, to reveal the importance of geometric visualization as essential element to solve the 
question. 
After mapping the questions related to the geometric magnitude volume (Leão 2017) and creating 
the criteria for categorization, a classification was sought for the questions. We organized them into 
seven groups. In general, if we look at the content of volume, the majority of questions relates to 
calculating the volume of a solid; nonetheless, they involve different tasks. Instead of grouping by 
task, we looked at techniques identified to solve the questions, seven in total, as can be seen in 
Table 1.  
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An important result, that can be seen in table 1, is that formulas (FV and FA) are very valued to 
solve these questions. Most of questions requires students to calculate the volume or area by giving 
the lengths. Meanwhile, only three out of 16 questions require students to deals with composition 
and decomposition of volume, which also shows a great valorization of the numeric frame even in 
ENEM test.  
Despite the tasks to solve the questions being the same, the techniques required in the resolution of 
each question were not the same, nor disposed in the same order. The analysis allowed us to 
conclude that the challenge level of the questions is given by the chaining of tasks to solve the 
questions. We discovered some other aspects required in ENEM, such as connection with different 
areas of knowledge, proportion and percentage.  
Classification of the questions of Textbook in relation to ENEM questions 
After classifying the ENEM questions, we started the analyze the ones from textbooks, looking for 
questions that involved the volume magnitude. We looked at 91 questions that dealt with the 
volume magnitude, distributed in the 3 volumes of the textbook collection analyzed. Only volume 2 
of the collection had the volume concept approached satisfactorily, within the whole chapter of 
spatial geometry.  
Among the 91 questions from the textbook, only 2 are classified into group 1, which uses the 
formula of volume and unit transformation only. On the other hand, within the questions that use 
the formula and the composition and decomposition of volume, we found 22 questions, classified 
into group 2. In group 3, in which most questions are found, a total of 41 questions make use of the 
formula, comparisons additives and some properties of the solids. We did not find questions that fit 
into group 4, where the questions use the Cavalieri principle, volume formula, area, and 
proportionality, and only one question was classified into group 5, which uses, in addition to the 
volume formula, percentage. We found 11 questions that fit into group 6, which involve the use of 
formula and volume comparison. Only 3 questions used proportionality and multiplicative 
comparison in their resolution, without the use of the formula. We have 11 questions that did not fit 
into any of the groups initially formulated. These questions use other combinations of techniques 
than the described, that were not seen in the ENEM test. 
 

Figure 2: Percentage of questions from Textbooks and ENEM in each group that deal with volume. 

We can see with this classification that a great part of the questions presented in the textbooks 
analyzed the use of formula, in counterpart with the little use of different knowledge inherent to 
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other areas of mathematics, such as percentage and proportionality, reiterating previous research 
that indicates the predominance of the numerical aspect. 
The graph (Figure 2) brings a comparison of the percentage of questions (among those which 
explore volume) in each of the resources. 
About the ENEM questions analyzed in this paper, we could see that volume treated as a number is 
present in most of the questions, as well as in the textbooks analyzed. The graph shows that the 
textbook concentrates its approach of volume into question from groups 2, 3 and 6 while ENEM 
does it from groups 2, 5, 6 and 7.  
We also found that some aspects that are required in ENEM questions did not receive great 
emphasis, such as connection with other areas of knowledge, proportion, and percentage. In this 
case, we saw many questions that involve proportionality and percentage in their resolution. 5 out 
of 16 questions, about 6%, involve percentage. In the textbook, we found only one question that 
uses percentage, an ENEM question that is present in our analysis and at the end of the textbook. 
Only 11 of the analyzed questions used proportion in their resolution. Regarding the Cavalieri 
principle, we did not find any question in the textbook that explicitly use such concept, but in the 
explanations of the sections, the concept was widely used. The concept of composition and 
decomposition was seen in 3 questions and multiplicative comparison in 3 questions as well. We 
also verified that the textbook brings many questions from ENEM, some seen here in this work, 
using, beyond the formula, composition and decomposition, transformation of unit and proportion. 
Observing the percentage of questions classified in each group, from ENEM and the TB, textbook, 
some TB questions did not fit into the groups created for the analysis of the questions of the tests. 
We then listed these questions, that make up a total of 12% of the questions from the textbooks, of 
which resolution techniques are among the techniques described in different configurations of the 
groups already listed. 
Conclusion 
In the analysis of ENEM questions we observed the predominance of the numerical aspect of 
volume, being present in all the questions analyzed.  However, many of them also used other 
aspects for its resolution, such as and decomposition composition and transformation of units, as 
well as the relation with other internal areas of mathematics, as numbers and operations, which are 
used in more than half of the questions. 
In the analysis of textbooks, we could note that only the volume 2 of the collection had the concept 
of volume approached satisfactorily, within the spatial geometry chapter. In that chapter, the use of 
the Cavalieri principle was requested several times in the introduction to the solids’ volume, but 
without any mention to questions directly involving the concept. The questions involved, in general, 
the numerical aspect of the volume magnitude, with questions that also used composition and 
decomposition, a transformation of units and proportion. We did not find questions that dealt with 
percentage in their resolution, remembering that the analyzed questions from ENEM that involved 
this concept were 1/4 of the total, and may prejudice the student in the construction of knowledge to 
correlate different concepts in solving a problem.  
In the analysis made from the groups that were listed by similar resolution strategies, we observed 
that the number of questions that only use formula for its resolution in the textbook is about 45%, as 
opposed to only 6% of ENEM questions and the questions that use percentage and formulas in its 
resolution in the exam is about 25% when only 1% of these questions are represented in textbooks, 
thus stating that the relation with other knowledge, besides the use of formula, is still being 
undervalued by books. 
In general, the textbook satisfactorily addresses the skills and competencies required by ENEM, as 
far as volume is concerned, when dealing with related questions, but when the knowledge of other 
areas of mathematics is required, the approach is short or nonexistent. While the textbook helps the 
student in his preparation for the ENEM test, in relation to the magnitude volume addressed in this 
study, it falls short in its correlation between distinct areas, internal and/or external to mathematics. 
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We believe that it is necessary and relevant to advance this research regarding the expansion of the 
analyses, based on the increase in the number of collections of high school mathematics textbooks 
evaluated by PNLD. We intended to analyze the three most chosen collections by mathematics 
teachers in Brazil, but the time needed to complete the study made this goal impossible. Analyzing 
more collections would generate a panorama about how the study of volume has been approached 
in these works, as well as how much these have contributed to the education of high school students 
and to their preparation to undertake the mathematical test of ENEM.  
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REDESIGNING OPEN TASKS IN MATHEMATICS TEXTBOOKS 
JOAQUIN GIMÉNEZ, ANTONIO JOSÉ LOPES and YULY VANEGAS   
Abstract  
In this paper, we analyze the role of improving designing tasks processes from the perspective that 
tasks do not exist separately from the pedagogies and didactics associated with their proposals. We 
used a Brazilian textbook project called “Matemática do cotidiano”. We focus on how the results of 
classroom implementation can help to redesign the task increasing its power for potential creative 
reasoning. After the analysis, we found a need for adapting the task concentrating on a degree of 
openness, and the need to help the teacher to manage the debates in the classroom to encourage 
creative thinking.  
Introduction  
The activities regularly presented in mathematics textbooks for elementary education are usually 
closed, simple and without challenges. Task design is part of recent interest in analyzing the role of 
the task and the teacher when using open-ended tasks in textbooks. Previous research results 
showed that participants who practiced with ill-structured tasks performed worse than those 
practicing with well-defined tasks (Boaler 2015). Many authors state that the role of teachers is to 
broaden the textbooks proposals by opening and challenging them. In fact, we assume that tasks do 
not exist separately from the pedagogies and didactics associated with their proposals.   
Research into the design and use of mathematical tasks in instructional settings should 
accommodate student intentions, actions and interpretations to at least the same extent as those of 
the teacher. In fact, Lithner (2008) suggested that a key variable in learning mathematics through 
task solving is to analyze the reasoning that students activate in relation to specific tasks. The use of 
inquiry, discussion and reflection of ideas is critical to student learning. Moreover, the tasks that 
teachers select for their classes are fundamental and characterize their work (Stein & Smith 2009). 
In such a framework, how can teachers be helped to improve the mathematical creativity potential 
of an interesting open task by increasing cognitive issues? How can it be done in a textbook?  
In this paper, our focus is on describing elements of creative mathematics thinking that appear when 
observing classroom experiences, thus improving the presentation of rich contextualized tasks used 
in mathematics textbooks. Our goal is that with these results, teachers will gain practice improving 
their students’ mathematical creative thinking. We specify the need for including explanations to 
the teacher about his/her role in classroom discourse when managing such rich mathematical tasks. 
Theoretical issues 
To improve the epistemic mathematical quality of task design in a student centered perspective it is 
necessary (Barzel, Leuders, Prediger & Hußmann 2015): to use mathematical examples, 
connections and diversity of representations in classroom discourse (Adler & Ronda 2017); to give 
opportunities for reasoning and students’ legitimation for promoting mathematisation and retention. 
It is also important that the teacher have tools for applying suitability criteria when analyzing 
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mathematical activities (Giménez, Font & Vanegas 2013). On the other hand, in order to promote 
creativity for all students it is important to design tasks that improve the ability to recognize and 
define problems, generate multiple solutions and paths toward solutions, reason, justify 
conclusions, and communicate results (Leikin & Pitta-Pantazzi 2013).  
To analyze the potential of creative mathematical thinking (CMT), we use a set of different 
dimensions of creativity (according Sala, Barquero, Font & Giménez 2017). 
(a) Openness, generalization and versatility: giving opportunities for diversity and surprising 
solutions, which can promote generalized procedures and flexible strategies, adaptable to different 
uses of mathematics and groups of students.  
(b) Problematization and inquiry: the incorporation of questioning which helps to problematize 
students’ knowledge, as well as giving the opportunity for students to propose new questions.  
(c) Combining representations: the need for giving opportunities to explore, use and combine 
different representations of mathematical objects.  
(d) Exploration and conjecturing: ways of facing mathematical arguments and reasoning in order to 
increase fluidity of mathematical objects and processes.  
(e) Connectedness: the need to establish intra- and extra- mathematical connections when possible 
to establish mathematical structures. Theoretically speaking, we assume that intra- and 
extra-mathematical connections should appear when two epistemic configurations are connected by 
one of their elements such as definitions, representations or arguments (Giménez, Vanegas & Font 
2013). Extra-mathematical connections relate mathematical ideas to real world experiences in order 
to understand and improve modelling processes. Intra-mathematical connections could be using 
common definitions, using similar examples, same arguments or similar representations (Vanegas, 
Gimenez & Font 2016).  
(f) Validation: offering tools to students for self-validation and control of their mathematical 
proposals, as we did for problem solving and modeling processes.  
(g) Emotion: Giving opportunities for the activation of emotions, promoting mathematical 
communication and debate with emerging mathematical consensus.  
Methodology  
We use some tasks from a Brazilian textbook called “Matemática do cotidiano” (Lopes & Giménez 
2015). They are contextualised tasks in which students should be active participants in the 
educational process, rather than receivers of ready-made mathematics, thus developing 
mathematical tools and insights by themselves. According to such a perspective, the 
teaching-learning process should be closer to the creativity proposals cited above.  
For our study, we observe two regular classes where two geometry tasks are performed (tasks 1 and 
2). Task one, was implemented with 30 students of 10-11 years of age and task two was 
implemented with 30 students of 11-12 years of age. In both cases, the teachers have 10 years of 
experience and their practice is characterized by listening and involving the students. The teachers 
do not have a strong mathematical background. During the implementation, we assume that the 
interaction process should elicit rich threads of student reasoning, facilitating an integration of the 
critical role of classroom milieu and related socio-mathematical norms in the conduct of the 
instruction (Prediger, Gravemeijer & Confrey 2015). Such a process gives opportunities for careful 
attention to argumentation, explanation and giving attention to generalizability of findings 
(according Kieran, Doorman. & Ohtani 2016).  The analysis of these practices will enhance 
task-design, evaluation, analysis and revision of the learning arrangements. 
 

The data 
We consider the tasks and the journal writings as data of the research process. Let us explain the 
tasks implemented and analyzed as examples to observe the role of the task and the teacher.  
Task 1.  “Design the blueprint of a building according to the following measurements. Use a sheet 
of paper to do each place. Cut out each of the building’s spaces, and paste to the building having the 
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following: 3 rooms (3m x 3m each); 1 dining room (4mx6m); 1 dining room (3m x 6m); 1 corridor 
(5m x 2m); 1 kitchen (7m x 3m); 2 bathrooms (2m x 2m each) and 1 garden (3m x 12m)” (Lopes & 
Giménez 2015).  
Task 2, “Find the maximum area defined by the pieces of pentominoes (after discussing about this 
shapes). This open statement promotes an immediate discussion about introducing conditions. The 
first possibility is to find the maximum sized rectangle having the pieces as borders. The second 
problem is to consider the maximum area of a “tunnel shape” as it is shown in figure 4, and the 
pieces being a curve creating a possible irregular figure.  
We believe that both tasks are open enough for students to find intra–mathematical connections, 
promoting other creativity dimensions such as different representations and 
exploration-conjecturing dimensions, giving opportunities for creating a diversity of solutions. 
During the observations, we think a large diversity of individual ideas, strategies, solutions, 
findings, pre-concepts, etc. will also appear. It allow students, to actively and collaboratively 
reinvent geometrical ideas about the role of measurement, reflect about area measurement, and use 
multiplication procedures and spatial relations as mathematical objects. 
Results and discussion  
The text of Task 1 is open and related enough to the real world to promote changes in a teacher’s 
mathematical mind. The teacher suggested that she was surprised, because she thought that the 
problem had a single answer using proportional reasoning. She “never imagined the power of 
children’s discussion using different scales when doing their drawings due to the openness of the 
question”. In fact, the teacher thought that children would use a square paper, in which a square 
means one square meter. Thus, the teacher did not take into account the openness and versatility of 
the task to open not only the arrangements of the pieces but also the construction of the spaces 
themselves. It was unique for the teacher in that new unexpected extra-mathematical connections 
appeared because the children generated a discussion about the possibilities of circulating space, 
relating the task to everyday life, instead of simple measurement observation and scale framework. 
In fact, when the teacher put two possible designs (as we see in figure 1) on the blackboard, the  
 

 
Figure 1.  Two children’s results of the apartment problem 

children wanted to discuss the face that in the first design the child did not use doors to go from one 
stage to another, but in the other case the child considered the real need of passages. They also 
talked about the need of a possible corridor, and other inventions not present in the proposal. Some 
students designed a house without doors, only looking to the mathematical conditions, forgetting 
the real contextual conditions (as we see in the left example in figure 1). Some of these ideas were 
used by the teacher as problematization or inquiry, but some others not, as in the following 
example. In fact, many students tried to create a “compact apartment” and when possible, close to a 
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rectangle, which is not a constraint in the initial proposal. It is a creative potential of the task that 
was unexpected for the teacher.  
The book for the teacher had a simple comment about the task “Look at the personal answers and 
discuss them”. The researchers understood that the experienced teacher solved and managed part of 
the discussion spontaneously to clarify some intentional mathematical meaning (the object scale). 
However, the teacher did not manage the difference of scales to see them as different viable 
strategies, in order to promote fluent and versatile strategies, and possible generalization of the 
task, therefore gaining creativity potential. It seems that in a new version of the task, some 
suggestions will help to invent new problems based on the constraints.     
During the experience, the students clarify by themselves some of the contextual constraints, and 
the situation itself doing good connections without the expectation of the teacher. Some students 
use three bathrooms, which is not common for most families, to see a possible generalization 
suggesting the use of more than one stage of each room. Therefore, the teacher did not use all the 
power of transforming the task to promote a set of new questions as new problems suggested by the 
children. Such transformations give opportunities for conjecturing. 
Such a rich open task also provides opportunities for the teacher to teach additional new skills and 
for students to practice unexpected mathematic skills such as the use of the same area in different 
positions, giving for instance the possibility to find the unexpected relation between perimeter and 
area. It would help to elicit new intra-mathematical connections.   
We assumed that the task promoted positive emotions related to different possible right answers, 
present in the task itself. As a research team, we also observe that children are proposing ideas, and 
perhaps using technology; not only being engaged in the problem but also being involved in a 
creative mathematical classroom discourse. In fact, after the classroom, the children say that, “We 
did an interesting problem yesterday. Julia for instance told us: ‘I never imagined that an area 
problem is important when we buy an apartment’. Carla explains, ‘I liked building my own house. I 
observed that Mario also made a good apartment that I like a lot with a terrace in front of the 
swimming pool!’”  
We know that it is not an easy task, because it provokes a compromise to see some “wrong 
arguments” in terms of validity dimension of creativity. For instance, some children overlap two 
rectangles, to see a regular shape of an apartment. We observe that it is difficult for the teacher to 
accept. During the school experience, the teacher in task 1 noticed that “the task could be more 
challenging, by observing children’s drawings: ‘Where is the corridor in your answers?  Did you 
manage to have a rectangle?”  With such proposals, we will redesign the task for the next textbook 
publication on the potential of creativity registered during the school experiences from a “student 
centred” perspective. The textbook’s authors immediately state that “next edition, we will put a new 
sentence: ‘Discuss your answers in pairs, with your colleagues’”. Moreover, to add a comment for 
the teachers such as, “Observe not only the different possible apartments, but also the possibilities 
for children to create new mathematical problems and relations. Focus on the possible relations 
between area and perimeter”.  
Observing Task 2, after many trials, we see the students proposing different representations helping 
them with further visualization issues such as problematization and the power of openness to 
present different strategies and solutions such as the creative and versatile generalization process.  
During the task discussion, children use different parameters and analyze their influence on a real 
situation. In figure 2 on the left, a student tries to find a large hole and an internal rectangle. In the 
middle, a child tries to connect the pieces as an external rectangle (as we see in figure 2) however 
she found the measurement of a hole. In the right figure, another student discussed if it is a 
maximum internal area.   
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Figure 2. Three different answers for creating a large hole with the pentominoes pieces. 

Thus, problematization not only appears because of the open task, but it broadens the inquiry 
perspective by promoting conjectures and trials for proving. 
The only convincing argument for having one bigger hole than the other is the counting process. 
When the children discussed the problem, a new set of problems proposed by the children appears. 
During the task discussion, children use different parameters and analyze their influence on a real 
situation. In fact, rich open activities are not enough by themselves to promote it, but teacher 
engagement helps to increase openness when the teacher hears and legitimates the students’ 
answers. It is difficult to include this issue in a textbook, but we tried to consider it in a section 
called “didactic orientations”. For instance, we will propose including a comment for the teacher in 
a redesign, “Use the development of the task to see what happens with a rectangle as a hole? Is 
there a figure having the maximum size? Is it possible to see a rectangle outside and a rectangle as 
an internal hole? “.  In figure 3, we see two trials for a maximum and minimum internal rectangle 
made by Joana.  

  
Figure 3. On the left hand, Joana found a rectangle bigger than the right one. 

Joana found several rectangles as possible answers as we see in figure 3. She could not prove that 
the left one is the maximum area. She could conjecture that the right image corresponds to the 
minimum. Task 2 is also open enough to promote new questions, after observing different trials. In 
fact, such a task was introduced because some children proposed in a previous version. It is a good 
example of redesign showing a problematization process. We can see an example of a children’s 
solution in figure 4. 

 
Figure 4. Conjecture about the maximum area of a tunnel shape limited by pentominoes 

In such implementation, emotional issues appear when we observe some answers of the students. 
Let us see in figure 5. The children told the teacher “I did not solve it” (left side) or “I’m the best”, 
“Wonderful, wonderful…”  “Super good” “I created the minimum rectangle”. These are just some 
examples of exciting answers given by the children. 
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Figure 5.  On the left, Gabriela’s trial without a solution. On the right, Joana discovering the minimum 
rectangle as a hole. 

We mention that the task promoted the observation of conceptual differences in 11-12 year-old 
students’ knowledge when they reflect on the classroom process using this activity. For this 
purpose, the teacher in task 2 promotes the use of writings about implementation as a 
self-regulation process. The activity also promotes intra-mathematical connections as a creative 
dimension. In fact, analyzing students’ work (as presented in Gabriela’s work), we observe some 
creative dimensions when constructing mathematical processes.  Joana speaks about perimeter and 
area colloquially, as "contour", not yet associated with the measurement. The idea of area used is 
counting, a consequence of the fact that the polyminos can be treated in the domain of discrete 
numbers. She uses her own terminology (assumed and / or created by the group) as the idea of the 
"track" (as a race circuit) associated with the idea of contour. Joana also explains conceptual and 
procedural relationships. Joana implicitly assumes that the flat figures have a perimeter and knows 
how to calculate the perimeter. She relates the pieces and their drawings with the quantification of 
possibilities, and evokes a relation between parts and motions and part invariance / rotation. Joana 
reflects positively on the "educational" value of working with pentominoes in the area problem and 
assumes that she has developed geometric problem solving skills. Finally, Joana formulates new 
problems used in class involving construction with the pieces and the measurement of area 
(minimum and maximum). 
In her writing, Gabriela shows appreciation for as detailed communication as possible in her first 
experience of writing about her processes and her knowledge, and she links the contents of 
conceptual (object, relations, properties) and procedural nature. We perceived that Gabriela values 
recording in the form of drawings (with legends) and an appreciation for the domain of geometric 
terminology when it names the isometric transformations (rotation, translation and reflection), and a 
beginning of use of notations. She recognizes the provisional results obtained by the group of 
colleagues against the information of other results outside their personal context, posing a reference 
to the fact that there are other better results in relation to the problem of the gap limited by 
pentominoes, which is an open problem not yet demonstrated.  
In such activities, all the students negotiated some mathematical constraints involved in the task. In 
fact, there are not contextual conditions, but each context implies that the students understand that 
many different contexts could give possible answers. We also observed that when a problem 
involves opportunities for using a computer tool there is a new opportunity to frame new 
negotiation by introducing new kinds of representations and interactions, because students interrupt 
the dialogues of the colleagues, showing their interest in the debate itself. In such cases, the gesture 
appears to be important among students. It is difficult to include such management tools in a 
textbook, but we must tell the teacher that it is not enough to talk about dialogue without explaining 
something about the type of dialogue, which increases creative potential.   
Conclusions 
According our results, we found that when redesigning mathematical tasks, we assume that 
textbooks should include some explanations for the teacher about creative mathematical potential 
about the tasks and about how to manage the school interactions In fact, many creative potential 
dimensions observed are present in the task itself as we observed in both tasks presented:   
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(1) Openness, generalisation and versatility appear if we express a certain degree of openness of a 
task and we assume the importance of the role of the teacher using textbooks. We increase openness 
when we present questions as general and as open as possible to provide opportunities for focusing 
on extra-mathematical connections, such as architectural design or gaming.  In our examples, there 
is enough openness to promote flexible understanding. (2) As for problematization, we found that 
rich open tasks promote conjecturing inquiry processes, a research attitude for creative thinking as 
was found by other studies (Leikin & Pitta-Pantazi 2013). (3) To conserve the demand of using 
different representations, increasing diversity of possibilities until the moment of mathematics 
consensus, when the task is open enough to promote autonomy. (4) Exploration and conjecturing 
attitude appear in both tasks. But to give instructions for the teacher to manage the architectural 
debate serves to discuss what is needed to have a sustainable house, the human needs of room size 
according the number of members in a family, and so on. The changes of the questions reveal a 
creative conjecturing position, more than imitative (Lithner 2009). (5) Connectedness in some 
particular tasks appears because measurements relate to everyday life and the use of scale as a way 
to represent real world or gambling situations (6) Validation. The role of the teacher is essential to 
encourage children to validate solutions, and even to accept that many solutions can be acceptable 
as a conjectured framework given from the dialogue.  The mathematical consensus in natural 
debates appears not only when accepting the validity of the colleague’s solutions, but with the 
student’s legitimation (Adler & Ronda 2017), understood as an acceptation of students’ authorship. 
In our implementation, we see that children’s writing journals gives deep opportunities for 
self-regulation and validation increasing creative mathematical potential. (7) Emotional dimension. 
Contextualized tasks seem to be enough to engage children to grow mathematically, but it is 
necessary for children to be legitimate in their negotiations of mathematical meanings. The 
framework of a playing task activates strong emotions, because each student can reflect by using a 
trial and error strategy available to all. 
According to our results, it is necessary to include a set of comments in the textbooks to drive an 
appropriate questioning dialogue in order that the teacher should redesign the management process. 
The debate of students’ answers gives new opportunities to create new, different problems. 
Sometimes (as in task 1) in order to enlarge the potential of different intra-mathematical 
connections, it is not enough to have an open problem, but rather to manage a discussion that 
suggests the children invent new problems. To improve problematization, it is necessary to discuss 
mathematical objects, such as the role of possible different scales, or the relation of area-perimeter.  
There is a need for expanding generalization and inquiry exploration.  Time for having a natural 
debate serves as self-validating mathematically their proposals. This dialogue should articulate not 
only the variety and originality of answers, but also discussion distinguishing the contextual and 
mathematical aspects. During a redesign process, it is also important that the didactic comments 
help the teacher to intertwine and manage the interactions in order to focus on mathematical 
meanings. The results suggest that the teacher who reads a textbook should know elements of the 
impact of the classroom experience, thus resulting in the need for increasing group validation 
processes and self-regulation. 
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TEACHING STATISTICS IN TEXTBOOKS: THE PNLD AND THE 
TEACHER'S HANDBOOK 

GILDA GUIMARÃES and NATÁLIA AMORIM 

Abstract 

This study aims to investigate whether there is influence of the prescribed curriculum (the PNLD 
guidelines) on the curriculum presented to teachers (teacher's manual presented in mathematics 
didactic collections) specifically on teaching and learning of statistics. For that, we analysed the last 
five editions of the school textbook guide published by the PNLD and four (4) collections of 
textbooks approved in the 2007, 2010, 2013 and 2016 editions. We observed that the PNLD's 
textbook guides indicate less competences than the didactic collections presented in all the years in 
focus. However, it is noteworthy that 2016 Guide shows a great expansion of the competences to be 
developed in the teaching of statistics, formalising some competences that already appeared in the 
books, and going beyond all the competences hitherto related in the didactic collections.  
Key words: statistical teaching; textbook; teacher's handbook; PNLD. 

 

1. Introduction  
This study aims to investigate whether there is influence of the prescribed curriculum (the PNLD 
guidelines) on the curriculum presented to teachers (teacher's manual presented in mathematics 
didactic collections) specifically on teaching and learning of statistics. This is so important taking 
into account the important role played by the teacher's handbook when presenting the structure and 
didactic organisation of the collection, as well as theories and methodologies that can contribute to 
better use of the proposed activities. 
The creation of the PNLD, in 1996, had as purpose the evaluation, purchase and distribution of 
textbooks, and, currently, has been carried out in triennial cycles, meeting all levels of basic 
education in Brazil. The PNLD Guidelines presents a review of the approved collections, resulting 
from an evaluation process carried out by teachers from educational institutions in various regions 
of Brazil, with theoretical comments and reflections on the collections, helping with the choice of 
the textbooks that teachers will use. In addition, it brings criteria used and competences to be met.  
Reflecting on issues that construct a rationale about curriculum development, Sacristán (1998) 
states that when we define the curriculum, we are describing the functions of the school itself in a 
given historical and social moment, in its content and in the ways in which it organises and presents 
itself to teachers and students. Sacristán (1998) proposes a model to interpret curriculum organised 
in six levels of development.  
2. About Curriculum 
From a set of disciplines of a course to the organization of learning and teaching processes and their 
management, there are several different definitions for ‘curriculum’. As Santos (2012) argues, it is 
necessary to speak of curricula, since these are social practices that are established in the 
complexity of diverse and plural educational networks, creating tensions between the instituted and 
instituting processes. 
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When reflecting on the curriculum or making some reference about some element that involves 
curricular practices, it is necessary to have clear its scope, all aspects it embraces, its influence in 
the school routine and in all school spaces from its construction until its materialisation into a 
classroom. It is necessary to understand that this construction does not take place in a neutral way 
or without a purpose, that it always involves political and social interests, which are constituted 
with the purpose of meeting certain educational goals, and that it is always in constant 
transformation.  
Sacristán (1998) states that when we define the curriculum, we are describing the functions of the 
school itself in a given historical and social moment, in its content and in the ways in which it 
organises and presents itself to teachers and students. It is an option historically configured within a 
culture, politics, society and school, carrying, therefore, values and assumptions. Several agents 
interact on the curriculum, creating different areas of action, from its implementation with what has 
to be taught, through the prescriptions, to its evaluation as a way of verifying its quality, which 
materialises through the pedagogical practices that are constructed on those several influences. The 
curriculum is organised around a distribution and specialisation of content through courses, levels 
and modalities, and that it differ in the different levels of the school system and in the various 
competencies that are established by age. 
In this sense, Sacristán (1998) proposes a model of interpretation of the curriculum organised in six 
levels, or moments, of development (curriculum prescribed, curriculum presented, curriculum 
modelled by teachers, curriculum in action, curriculum executed and curriculum evaluated) with 
different mutual degree and strength of influence, but which are always interrelated, reciprocal and 
circular.  
 
 
 
 
 
 
 
 
 
 
 
 
 
       ACTUAL CURRICULUM 
      Complex effects: explicit-hidden,  
     in students and teachers, outdoors environment,  
          etc. 
 
 
 

 
 
 
 
 
 
 
 

Figure 1: The objectivation of the curriculum in the process of its development Source – Sacristán 1998, p. 
105. 

According to Sacristán (1998), curriculum prescribed is the one that 

 "in any educational system, as a consequence of the inexorable regulations to which it is 
subjected, taking into account its social significance, there is some kind of prescription or 

CURRICULUM PRESCRIBED 

CURRICULUM PRESENTED TO TEACHERS 
 

Ec
on

om
ic

, p
ol

iti
c,

 so
ci

al
, 

cu
ltu

ra
l a

nd
 a

dm
in

is
tra

tiv
e 

fie
ld

 
 

Sc
ho

ol
 c

on
di

ci
on

er
s 

CURRICULUM MODELLED BY TEACHERS 

INTERACTIVE TEACHING 
CURRICULUM IN AÇTION 
 

CURRICULUM EVALUATED 
AVALIADO 



 Guimarães and Amorim 

 326 

orientation of what should be its content, especially in relation to compulsory schooling. They 
are the aspects that act as reference in the ordering of the curricular system, they serve as starting 
point for the preparation of materials, control of the system, etc." (p.105) 

Curriculum presented is the one that has  

"a series of means, elaborated by different instances that usually translate for teachers the 
meaning and contents of the curriculum prescribed, performing an interpretation of it. The 
prescriptions are usually very generic and, to the same extent, are not enough to guide the 
educational activity in class. The very level of teacher training and working conditions make it 
very difficult to set the practice from the curriculum prescribed. The most decisive role in this 
regard is played, for example, by the books". (p.105) 

The textbook is a very strong didactic resource in schools, and assumes the role described by 
Sacristán (1998) as "presenters of the curriculum pre-elaborated for teachers" (p.150). Its use is 
considered almost inherent to the practice of the profession, denoting the dependence of teachers on 
some material that structures the curriculum, develops its contents and exposes teachers to teaching 
strategies and methodologies.  
When the didactic collections are being analysed, it is fundamental that the Teacher’s Guidance 
Handbook is evaluated also, both in the general part and in the parts that are specific to the activities 
proposed in the books. 
3. About the Teacher's Handbook  
According to the PNLD (2016) edict, the Teacher's Handbook is a mandatory part of the textbook 
and plays a very specific role in the teaching process, besides presenting the student's own book to 
the teacher. The Teacher's Handbook should explain the theoretical and methodological 
assumptions underlying its didactic-pedagogical proposal. The book should be a source of reliable 
references, presenting a formative role, as it engages in a direct dialogue with the teacher. It should 
present the textbook unit by unit, activity by activity, clarifying goals, anticipating possible paths of 
students’ development and their difficulties, helping the teacher to systematise the contents worked, 
discussing the relevant didactic choices, among others. 
In this study, we are interested in reflecting on the influence of the curriculum prescribed (the 
PNLD Guidelines) and the curriculum presented to teachers (teacher's handbook presented in the 
didactic collections), in relation to the teaching of statistics.  
4. Statistics in the research cycle 
Regarding the teaching of statistics, we understand that it is essential for the formation of a 
conscious citizen, capable of making autonomous decisions in the face of statistical data or 
information presented to him/her at any moment. The need to communicate statistically is 
increasingly frequent in our society.  
The school plays a fundamental role, because some knowledge is not characteristic to human 
development. School intervention is paramount for the acquisition of specific knowledge.   
Amorim e Guimarães (2016) had analysed the objectives proposed in the PNLD Guidelines for the 
initial years of elementary education for the statistics axis in the 5 (five) last editions of the 
Mathematics Textbook Guidelines, years 2004, 2007, 2010, 2013 and 2016. Figure 2 shows the 
competence per Guidelines. 

PNLD 
Guidelines 

Teaching goals/ Competences related to the Teaching of Statistics 

2004 - Know how to represent and interpret data in non-Cartesian graphs. 
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2007 
 

- Work with issues relating to physical or social reality data that need to be 
collected, selected, organized, presented and interpreted critically. 

- Make inferences based on qualitative information or numerical data. 
- Articulate the axes of mathematics 

2010 - idem to 2007 
2013 - idem to 2007 and 2010 

2016 
 

- Work with issues relating to physical or social reality data that need to be 
collected, selected, organized, presented and interpreted critically. 

- Make inferences based on qualitative information or numerical data. 
- Articulate the axes of mathematics  

- Reflect on: the research question, variable types, different types of graphs and 
tables, the relationship between numerical line and graphs, the mean and measure 

of variability. 
Figure 2 – Goals/competence per Guidelines. Source – Amorim & Guimarães, 2016, p. 6 

The authors affirm that there are two defining moments. The first moment concerns the changes 
presented between guidelines 2004 and 2007, since the goals for the teaching of statistics are to 
provide students with a reflection on the function of statistics and not just on some types of graphic 
representations, like in 2004. From the 2007 Guidelines onwards we observe a concern about the 
actuality of the data, linked to the physical or social reality and under a research perspective, 
involving collection, selection, organization, representation, analysis and inferences based on 
qualitative information or numerical data of the data collected. 
The second modification of the curriculum prescribed can be observed in 2016 Guidelines, which 
places research as the structuring axis of the teaching of statistics, considering the importance of 
experiencing research and all its stages. It stresses the importance of working with more than one 
quantitative or qualitative variable, creating criteria to classify, distinguishing between tables and 
charts, understanding scales, estimating data analysis. It also states that we must consider measures 
of central tendency related to the amplitude, and its meaning as a descriptive measure of a set of 
numerical data.  
This study aims to reflect specifically on the influence of the curriculum prescribed (the PNLD 
Guidelines) and the curriculum presented to the teachers (teacher's handbook presented in the 
didactic collections), taking into account the important role played by the teacher's handbook when 
presenting the structure and didactic organisation of the collection, as well as theories and 
methodologies that can contribute to better use of the proposed activities. 
5. Method  
We analysed, for this research, 4 (four) collections of mathematics textbooks, including books from 
1st to 3rd year, approved in the 2007, 2010, 2013 and 2016 editions, making a total of 76 books. 
The criterion to choose the collections was that they were the best selling, therefore, probably the 
best used, textbook collections in Brazil. 
Thereafter, we compared the proposals presented in the PNLD Guidelines with the 5 (five) last 
editions of the Mathematics Textbook Guidelines, years 2004, 2007, 2010, 2013 and 2016 and the 
guidelines for teachers presented in the Guidance Handbooks. 
To carry out the analyses with the teacher's textbook, we tried to identify the concepts or objectives 
presented in the general part and in the specific part addressing the teaching of statistics1 
(information processing). In Figure 3, we give an example of a unit of analysis presented in the 
general part. From this paragraph, we can affirm that the collection aims to propose the learning of 

                                                                            
1 The mathematical axis that addresses the teaching of statistics was called information processing. 
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different types of graphs, construction and interpretation of a table, construction and interpretation 
of graphs, classification, data collection and research.  

Figure 3: Sample from the general section of the teacher's manual 

 

 

 

 

 
Source – collection Ápis, Volume 2, 2010, p. 49. 

In Figure 4 we give an example of a unit of analysis presented in the specific part, in which we can 
affirm that the collection aims to articulate axes of mathematics, different types of graphs, interpret 
a table, fill in a graph or a table, collect data and perform research.  

Figure 4: Example of text of the specific part of the teacher’s handbook 

 

 

 
Source – collection Plural, Volume 2 , 2016, p. 419. 

In this way, all texts referring to statistics were identified. Firstly, it was analysed which concepts 
were cited and then analysed the conception of education. Furthermore, we observed if the teaching 
conception addressed had as a presupposition the learning of statistics should consider all phases of 
the cycle of research, stimulating the students to reflect on the function of the research. 
6. Results 
We started by establishing relationships with the goals related to the teaching of statistics presented 
in 2004 Guidelines and the Teacher's Handbook of the 2007 collections (Figure 5). The 2004 
Guidelines had only two goals: to represent and interpret data in graphs. All collections referred to 
these goals, and three of these collections refer to interpretation of the data, among the data and 
beyond the data. The conclusion is that the collections meet the goals indicated in 2004 Guidelines, 
and most go further still, specifying different types of data interpretation. In addition, the 
handbooks of the 2007 collections still refer to a large number of goals that must be developed in 
teaching statistics. 
 
  

Goals  in PNLD Guide 

Collections 
2007 

Collections 

2010 

Collections 
2013 

Collections 
2016 

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

real data x  x  x  x  x x x x x x x x x x x x 
articulation between 
axes 

 x  x  x    x x   x x   x x 
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articulation between 
areas 

x  x  x   x  x  x  x  x   x  x  x  x  x  x  

research  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  x  
aim x   x  x  x  x   x  x  x  x  x  x  x  x   
sample   x             x   
method of collecting  x  x  x    x   x  x  x  x  x  x  x  x  x  
instrument of 
collection 

      x           

collect data x  x  x  x  x x x x x x x x x x x x 
classify x  x  x  x  x x x x x x x x x x x x 
variable Type x  x  x         x    x  x   
graphic 
representation 

x x x x x x x x x x x x x x x x 

graphic interpreting  x x x x x x x x x x x x x x x x 
tables representation x  x  x  x  x x x x x x x x x x x x 

tables interpreting x  x  x  x  x x x x x x x x x x x x 
graph types   x     x     x  x  x  x  x  x  
scale  x   x              
conclusion   x     x     x   x  x  x   
inferences   x     x    x    x  

Figure 5 - Comparison between the PNLD Guides and the teacher manuals 
Comparing the 2007 Guidelines with the handbooks of the 2010 collections, we observe that all of 
them refer to work with actual data, articulation between the axes of mathematics, data collection, 
data organization/classification, representation and interpretation of tables and graphs, as proposed 
in the Guidelines. The handbooks for the 2010 collections refer to most of the competences related 
to teaching of statistics presented in the 2007 Guidelines. Two collections do not refer to the 
articulation between the axes. Again, the handbooks for the 2010 collections refer to other 
competences related to "information processing" learning that are not explicitly stated in the 2007 
Guidelines. There is also an absence of reference to the sample and scale occurred in the 2007 
handbooks. 
Comparing the 2010 Guidelines with the 2013 collection handbooks, we can see the need to work 
on issues related to data from the physical or social reality that need to be collected, selected, 
organized, presented and interpreted critically. There must be inferences based on qualitative 
information or numerical data, articulation of mathematics axes, and work with different tables and 
graphs. We can show that half of the collections meet the guidelines’ indications.   
The handbooks for the 2013 collections refer to most of the competences related to teaching 
statistics presented in the 2010 Guidelines. Two of the collections refer neither to the articulation 
between the axes nor to different types of graphs. No collection refers to different types of tables, 
and Collection 3 is the only one that refers to the need to make inferences. Again, the handbooks for 
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the 2013 collections refer to other competences related to the "information processing" learning. 
Reference to the type of instrument is absent from the handbooks of 2010. 
In observing the 2013 Guidelines related to the handbooks of the collections of 2016, we note the 
permanence of the same goals, such as the need to work with questions concerning physical or 
social reality data that need to be collected, selected, organized, presented and interpreted critically. 
Inferences must be made based on qualitative information or numerical data, articulation of axes of 
mathematics and different tables and graphs.The handbooks for the 2016 collections refer to most 
of the competences related to teaching statistics presented in the 2013 Guidelines. Two collections 
do not refer to the articulation between the axes. Note that all collections refer to work with 
different types of graphs. No collection refers to different types of tables. 
Again, the handbooks of the 2016 collections refer to other competences related to "information 
processing" learning as articulation between areas, work with research, delimiting objectives, 
methods, types of variables and conclusions.  
In a differentiated, 2016 Guidelines presents in-depth proposals on the teaching of statistics. In 
addition to the competences presented in previous years, 2016 Guidelines list, in item "Content 
Approaches": developing a research, formulating questions, defining (qualitative and quantitative) 
variables, describing measures (by arithmetic mean), integrating statistics, probability and 
combinatorial, establishing categories of variables (creating criteria for a classification), discerning 
between tables and charts, changing from chart to table and vice versa, understanding scales, mean 
and amplitude, conclusions. 
We observed that the PNLD's textbook guidelines indicate less competences than the didactic 
collections presented in all the years in focus. However, it is noteworthy that 2016 Guidelines show 
a great expansion of the competences to be developed in the teaching of statistics, formalising some 
competences that already appeared in the books, and going beyond all the competences hitherto 
related in the didactic collections.  
With regard to the analyses of the teacher's handbook and the teaching objectives presented in the 
guidelines on information processing, we found that the general and specific part details better 
activities and suggestions of activities and readings present in the collections in all the years, thus 
meeting criteria established by the PNLD edict.    
Comparing the propositions of the PNLD guidelines with the textbook guidelines for teachers, we 
observe that the guidelines and the textbooks are consistent regarding the goals presented for the 
teaching of statistics. The handbooks refer to what is explained in the guidelines, either in the 
general part or the specific part, or in detailing and explaining an activity further, in the 4 
collections analysed. 
We can identify that although the handbooks refer to more concepts than the guidelines, when 
analysing the activities we also noticed a great focus on activities related to graphs and tables, 
compared to the ones of construction of the research. All collections mention research, but the 
student is rarely asked to conduct his or her own research. Some phases of the research are not 
explored, such as research question, scale or sample. Few collections are able to present activities 
that require that students draw their conclusions. We hope that the publication of the 2016 
Guidelines incentivises the next editions of the collections to incorporate and discuss all phases of a 
research. 
However, it is important to note that this study is only a small sample of the collections approved. 
Nevertheless, we could observe differences between the collections, evidencing that the exclusion 
criteria are very broad. Those criteria can accept different methodologies and approaches, 
disapprove collections with conceptual errors, error induction, outdatedness, prejudice or 
discrimination of any kind; comply with legislation, guidelines and official standards relating to 
elementary education; accept coherence and appropriateness of the theoretical-methodological 
approach assumed by the work, with regard to the explicit didactic-pedagogical proposal and the 
goals; respect to the interdisciplinary perspective in the presentation and approach of the contents. 
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We believe that it is necessary to find ways to encourage managers, educators and authors to alter 
their proposals, since it is necessary to change the activities related to statistical education 
(information processing) for a quality education. Researchers such as Lopes (2012), Kinnear and 
Clark (2014), Barreto and Guimarães (2016), Evangelista and Guimarães (2015), Leavy and Sloane 
(2015), Cabral (2016), among others, highlight that children are able to understand much more than 
what has been proposed for this level of education. 
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LINGUISTIC, CULTURAL AND PEDAGOGIC DIMENSIONS OF 
GEOMETRY: NAVIGATING TEXTBOOK DEVELOPMENT IN A 

CROSS-NATIONAL PROJECT  
CANDIA MORGAN, TERESA SMART, NATALYA PANIKARSKAYA and 
ARMAN SULTANOV 
Abstract 
In this paper we explore the complexities of cross-cultural collaboration in a textbook development 
project involving Kazakh teacher-authors and UK consultants. Communicating through a translator 
brings with it inevitable problems. However, working to resolve communication difficulties revealed 
that these problems arose not only from linguistic differences but also from fundamental cultural 
differences in our understandings of mathematics and of pedagogy. We reflect on some examples 
from our work with Grade 7 Geometry. 
Introduction 
The Secondary Education Textbook (SET) project began in November 2014 as a collaboration 
between University College London Institute of Education (UCL IOE) and the Nazarbayev 
Intellectual Schools (NIS), a non-governmental organisation in Kazakhstan with responsibility for 
developing curriculum, assessment and pedagogy in its own group of schools for high attaining 
students, in support of general national educational aims. NIS has worked and continues to work 
with a number of international partners to support its objectives, drawing on best international 
practice, with a major aim not only to develop high quality education within NIS schools and more 
widely in Kazakhstan but also to develop capacity within the country to sustain and grow high 
quality teaching, teacher training, curriculum and assessment development and production of 
teaching resources (Bridges 2014). In the case of the SET project, the collaboration aimed not only 
to write and publish new textbooks for 10 secondary school subject areas but also, importantly, to 
support the development of local textbook authors and of textbook publishing in Kazakhstan. 
This paper focuses on the work of the SET mathematics team, comprising a group of six authors 
(one of whom is third author of this paper), two UCL IOE consultants (first and second authors) and 
a member of the NIS translation service (fourth author) who served as interpreter during team 
working sessions and translated written materials throughout the project. As we developed our 
collaborative work to produce a mathematics textbook for Grade 7 NIS students, we encountered a 
number of difficulties. In this paper, we describe and discuss some of the major sources of 
difficulty, focusing in on Geometry as a particularly problematic – but interesting – area of the 
curriculum. Our reflective analysis of the issues arising during our work identifies both cultural and 
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linguistic factors that affected communication within the team. This raises issues that need to be 
taken into account in such cross-cultural projects. 
Curriculum, Pedagogy and Assessment 
A key factor in the success of educational reform is the extent to which curriculum, assessment and 
pedagogy are aligned (Barnes, Clarke & Stephens 2000). The ambitious work undertaken by NIS 
has sought to develop these three elements simultaneously, drawing on international research and 
expertise, while valuing the existing knowledge and expertise within Kazakhstan and the cultural 
heritage of the nation. In the case of mathematics education, there is justifiable national pride in the 
success achieved by many students in a mathematics curriculum that has drawn on Russian 
traditions together with a consequent desire to retain the scope and rigour of this curriculum. There 
is, however, an ambition to reform the curriculum as a whole to develop students’ ‘21st century 
skills’ as well as traditional academic content. An important part of the brief originally given to the 
UCL IOE consultants was to ensure that the new textbooks would support forms of pedagogy 
consistent with this ambition, including inquiry-based learning and development of student 
independence and creativity. In mathematics a central aim was to bring out the ‘big ideas’ of 
mathematics and to develop students’ thinking skills while engaging with these big ideas.  
In advance of the writing of a new set of text books, the NIS had developed a new curriculum for all 
its schools. In mathematics, the new curriculum added problem solving to an extensive set of facts 
and skills, also specifying the order in which topics were to be studied. A new programme of 
assessment had also been developed, with tests set at the end of each of the four terms that make up 
the school year, based on the curriculum objectives mandated in the course programme for that 
term. The mathematics team of authors and consultants were necessarily constrained by this packed 
curriculum. The teaching and the textbooks had to cover the curriculum objectives and cover them 
in a defined order; this restricted our freedom as textbook designers and challenged our ability to 
develop the desired pedagogy within the textbooks   
Negotiation and compromise 
A critical feature of our growing collaboration was the development of mutual respect for the 
experience and expertise of each side in the partnership. On the one hand, the UCL IOE consultants 
brought considerable experience of a range of educational contexts (schools, further and higher 
education) in the UK and elsewhere in the world (Mozambique, Ghana, South Africa and Brazil) 
and expertise in teacher education, curriculum development and the design and production of 
teaching resources. We also brought knowledge of a body of international research in mathematics 
education – though we have come to realise the domination of this research by Anglophone and 
Western European traditions, often silencing knowledge arising from other traditions, including in 
particular that of the ex-Soviet republics. The group of authors on the other hand, brought their 
insider knowledge of the education system and traditions of Kazakhstan, the cultural norms of 
Kazakh society in general and of educational contexts in particular, as well as many years of 
successful classroom experience as teachers in a variety of schools across the country.  
The work of designing a textbook had to draw on the experience of the team but, as we came to 
understand better the differences between our experiences, we realised that many compromises 
were necessary on both sides. While the authors aligned themselves with the NIS aims and 
appreciated the value of pedagogic approaches suggested by the consultants, we all realised that 
there was no point in attempting to impose a pedagogy that would challenge core cultural values or 
deskill teachers. For example, an important area of difference lay in our expectations about the 
development of mathematical concepts. This issue arose early in the project during the writing of a 
chapter about indices as the chapter author sought to introduce a0. The authors as a group, drawing 
on their teaching experience, set a high value on students learning the definition and practising its 
application; they contended that, once learned, Kazakh students will always remember and apply 
the definition of a0 correctly. On the other hand, the consultants saw the introduction of a0 as an 
opportunity to model an inquiry-based approach as well as to build conceptual and procedural 
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knowledge, suggesting: Let the student try to answer the questions ‘What is the value of a0?’ ‘How 
can you multiply a by itself zero times?’ However, the authors knew that many teachers in their 
schools would not be ready for such open-ended discussions in the classroom. After a long 
discussion we reached a middle ground acceptable to both, involving definition and practice 
together with guided opportunity for discussion.  
A lesson that the consultants had to take on board was that the Kazakh team own the project and it 
had to be their textbook. As advisers and mentors, consultants can use persuasion, argument, 
research knowledge and experience to seek a middle ground but not to take over the writing of a 
unit. We had to search for compromises that would be both ‘effective’ and ‘permitted’. These 
compromises demanded extensive discussion and negotiation – made additionally challenging by 
language differences. All the authors had Russian as their first language and, while they had some 
facility with English, this was not usually sufficient to support effective negotiation. The role of the 
interpreter was thus critical but was not straightforward.  
For example, creating common understanding in the topic area of ratio and proportion challenged us 
all, including our interpreter. In England, the National Strategy for teaching mathematics, a 
government initiative to strengthen mathematics learning (DfES 2001), had placed great emphasis 
on students knowing, understanding and being able to apply definitions of ratio and proportion and 
being able to distinguish between the two concepts. According to these definitions, ratio is used to 
compare two parts (the ratio of girls to boys in a classroom) whereas proportion is used to compare 
one part to the whole (the proportion of girls in the class). When the consultants attempted to 
introduce this distinction into the relevant textbook chapter, the author team said that they did not 
use two words but only отношение (ratio). This prompted us to ask if this difference was linguistic 
or mathematical: was the same word being applied to two distinct concepts or were we 
conceptualising the domain itself in different ways? For an interpreter who is not himself a 
mathematician, catching the nuances of meaning in both English and Russian was undoubtedly 
difficult. After discussion, recourse to the internet and to a range of Russian textbooks, we agreed 
that the Russian dictionary translation for proportion (пропорция) appeared to be used in contexts 
where UK English speakers would use the adjectival phrase in proportion. In Russian text books, 
пропорция is defined as “an equality of ratios”. In English text books, two figures are defined to be 
in proportion if the ratio of their equivalent measurements is constant. The Russian noun 
пропорция and the English noun proportion refer to related but distinct objects, while the 
distinction made by the English National Strategy between ratio and proportion was not found to be 
conceptually significant within the Kazakh mathematical tradition. 
Finding a common mathematical language 
“Kazakhstan is the only post-Soviet country that is still poly-lingual …. Other Central Asian 
countries speak their native tongues.” (President Nursultan Nazarbayev, Astana Times, 21 October 
2013). Within Kazakhstan, ethnic Kazakhs make up 66% of the population. While 85% of these can 
speak and write Russian and over 94% understand it, only 6% of the ethnic Russians, who make up 
25% of the population, can read and write the Kazakh language (Lillis 2010). This means that 
public and government life, including the education system, is still dominated by the Russian 
language. In 2011 the Government of Kazakhstan put forward a programme to create a trilingual 
country with Kazakh designated as the national language, Russian as an official language used 
alongside Kazakh in state and local government affairs and English as an international language 
that would enable the people of Kazakhstan to benefit fully from international economic, 
educational and political opportunities. The NIS schools took up the challenge to create a trilingual 
education system with the aim to have teaching and textbooks available in the three languages. The 
vision of the SET project is that the student text books will be published in the three languages of 
Russian, Kazakh and English. This vision was originally based on the naïve view that the books 
would be written in one language and then translated into the other two. Our experience shows that 
this process will not produce equivalent meanings. The interpreter on the project has found that in 
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moving from Russian to English or vice versa he has to negotiate the specialised mathematical 
terms needed to convey the desired meaning in each language. The challenges of translation into 
Kazakh have not yet been addressed. We are now building a glossary of mathematical vocabulary 
that give correct and equivalent meanings for a concept in Russian and English. But this is not 
straightforward – as exemplified above in the case of proportion.  
Taking another example, in English textbooks the word line is used loosely. On the one hand it is 
used to mean a line in its strict Euclidean sense, having no thickness and extending infinitely, but it 
is also used to refer to a finite line with end points drawn on a sheet of paper. The word may also 
appear in a range of everyday contexts, referring to objects that may have very different properties 
(e.g. railway line, washing line, etc.). A teacher can say “Draw a line with length 5 cm”, with the 
understanding that the line should be straight unless stated otherwise. In Russian, however, these 
different types of ‘line’ are named and defined separately. A straight line is written as прямая 
линия (literal translation straight line) but is more usually known as прямая (literally straight); this 
term is only ever used to represent a Euclidean straight line that extends infinitely. A line that has 
an endpoint is known as a ray and two end points as a segment. All Kazakh teachers know this and 
teach their students to always use the correct term. While these terms are part of the mathematics 
register in English, they are not commonly used in school mathematics in England. 
The challenge of geometry 
The Kazakhstan curriculum until recently had a strong Euclidean orientation to geometry, 
accompanied by a pedagogy based on establishing definitions and theorems, followed by 
application of definitions and theorems to solving problems. Before the introduction of the new 
curriculum, the mathematics curriculum in Kazakhstani schools had been compartmentalised into 
the separate subject areas of number, algebra and geometry. In secondary schools, students had 3 
hours of number and algebra and 2 hours of geometry each week. In contrast, the new curriculum 
provides an integrated curriculum consisting of units of number, algebra and geometry distributed 
through the year. In the first two terms of Grade 7 there are only 13 hours of geometry in total and 
in the last two terms there are 45 out of a total of 90 hours of mathematics teaching. The consultants 
saw the integrated curriculum as a positive step, enabling more connections to be drawn between 
different areas of mathematics. They did not appreciate how difficult it would be for Kazakh 
teachers to adapt to this new curriculum model – a model that appeared to downgrade geometry in 
particular. When the integrated curriculum for mathematics was adapted and extended to national 
government schools the mathematics teachers in these schools argued strongly against it – and were 
listened to. In February 2017 the ministry of education responded to this discontent, agreeing to 
once more separate the teaching of geometry from that of number and algebra, although the NIS 
schools will continue to introduce an integrated curriculum. When a similar change from separate to 
integrated curriculum was made in England (during the late 1960s and early 1970s) the process was 
extended; schools were able to choose between separate and integrated syllabuses for a period of at 
least a decade, allowing schools and teachers time to adapt their teaching. In contrast teachers in 
NIS schools are being required to make the change in a single step from one year to the next.  
Extensive work during the early stages of the SET project enabled us to agree common 
understandings of the curriculum objectives and strategies for incorporating aspects of the desired 
forms of pedagogy into the first chapters of the Grade 7 textbook. As we started to work on 
geometry chapters, however, the process of negotiation became much more difficult. Initially, in 
analysing the curriculum objectives for geometry in order to plan the relevant chapters, the 
consultants found the English translation of the objectives to be unclear and the objectives 
themselves to be unfamiliar. There was a need for the team to analyse the curriculum together in 
order to achieve a common understanding. It became clear that, while language differences were an 
issue, they were intertwined with differences in our cultural expectations and knowledge of 
geometry. Such differences had not arisen to the same extent in other areas of the curriculum. As 
our discussions progressed, we found that we moved from debates about pedagogy to debates about 
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mathematics. In this paper, we will illustrate the complexity of relationships between language, 
culture and pedagogy with three examples. 
Example 1: Angle 
According to the NIS curriculum, students are first introduced to angle in primary school. The 
concept of angle that they encounter at this stage is the space between two sides meeting at a 
common vertex. They work with lots of real life examples, particularly looking at the hands of the 
clock, finding the angle between the minute hand and hour hand. In Grade 7, students are 
introduced to a formal definition of angle as the part of the plane delimited by two rays meeting at a 
common point. Kazakh learners recognise that a ray extends infinitely from its start point and hence 
an angle is part of an infinite plane. From the perspective of the consultants, this definition provides 
just one way of thinking about angle. The cultural expectations of the consultants, based in the UK 
education system, as well as our familiarity with a body of research in mathematics education (e.g. 
Magina & Hoyles 1997; Mitchelmore 1998), led us (CM and TS) to see this definition as an 
insufficient basis for developing an understanding of angle that would support progression.  
In the first place we saw difficulty in applying this definition of angle as a static space to the kinds 
of practical applications of angle that Grade 7 students are expected to deal with, such as the angle a 
door turns through as it opens or the angle at which an aeroplane takes off from the ground. Indeed, 
our whole approach to thinking about angle measurement was closely tied to a dynamic concept of 
angle as a rotation – a concept never explicitly addressed within the geometry curriculum in 
Kazakhstan. This difference in conceptualisation of angle is reflected in the language: learners in 
England talk about 180 degrees as a ‘half turn’ while a Kazakh learner will refer to an angle of 180 
degrees as a ‘flat angle’.   
Further, the consultants also anticipated problems as students progressed to later topics in geometry. 
For example, in the NIS curriculum a triangle is defined as the part of the plane delimited by three 
lines that meet at three points (each pair of lines meeting at a point). As in the case of the definition 
of angle, the focus of this definition is on the space delimited by lines rather than on the lines 
themselves; when a primary school child in Kazakhstan is asked to draw a triangle, they will always 
colour it in. So, while a triangle is a finite part of a plane, an angle is a part of a plane that is 
infinite. With these definitions, a triangle marks out three angles but does not contain angles. 
Although the Russian word for triangle is Треугольник (literally three angles), its curricular 
definition does not mention angles. Yet when students meet the topic of congruent or similar 
triangles they have to work with the idea that pairs of triangles ‘have’ angles that are equal. The 
textbook authors, drawing on their own educational experience and years of successful teaching, 
were confident that their students would be able to cope with these apparent inconsistencies. 
Moreover, a very experienced headteacher of a Kazakh primary school assured us that, over many 
years of teaching, she is confident that students, once they have learned a formal definition of angle, 
have no difficulty adapting their concept of angle to work in practical situations. The consultants 
still find this hard to accept. Our scepticism draws not only on our personal experience but also on 
European and North American research on how students move from practical to abstract 
understanding of angle  (e.g. Mitchelmore & White 2000). However, we have not found any 
comparable research in Kazakhstan or other post-Soviet contexts and have to respect the experience 
of our Kazakh colleagues. As a team we agreed that the text book for Kazakh schools should 
continue the current approach of giving students a formal definition but would also provide 
guidance for teachers to support students in moving from abstract to practical applications.  
Example 2: The linear function y=kx+b 
Our second example, while drawn from the part of the curriculum labelled as algebra, also involves 
the concept of angle. It relates to the curriculum objective “Know the definition of a linear function 

, plot its graph and predict its position depending on k and b”. The coefficient of x is 
named in Russian as угловой коэффициент, translated literally into English as angle coefficient. In 
Grade 7, students are shown how to draw the graph of a straight line given its equation . 
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They are told that k, the coefficient of x, is called the angle coefficient.  They are expected to learn 
that, when the angle coefficient is positive, the angle between the Cartesian line and the x-axis is an 
acute angle and, when the angle coefficient is negative, the line makes an obtuse angle (see Figure 
1). However, the more general issue of how the value of k relates to the size of the angle between 
the line and the x-axis is not addressed and it appears that the value of k is not related geometrically 
to any measure of the steepness of the line or to the fact that the line has constant steepness. 

 
Figure 1: Textbook extract showing the Kazakh approach to gradient in Grade 7 

In the Russian mathematics register there is a specialised term for gradient (градиент) but this 
term is only introduced to students in upper secondary school when they begin to study calculus, to 
be used exclusively in the context of gradient function and differentiation. This specialised term 
also does not appear to be used in geography or topography, contexts in which the English word 
gradient would become familiar to students in England.  
In contrast, in England the word gradient is introduced in lower secondary school to describe the 
steepness of a line; the value of the gradient is equal to the coefficient of x. Learners are expected to 
understand that, as |k| increases, the line becomes steeper. Rather than considering the angle made 
by the line with the x-axis, they are likely to learn that when k is positive the line slopes ‘upwards’, 
while it slopes ‘downwards’ when k is negative. They may also to be asked to calculate the gradient 
of a given line by drawing a right-angled triangle with its hypotenuse on the line and finding the 
ratio between its vertical and horizontal sides. Connections are likely to be made with use of the 
term gradient in concrete contexts such as the steepness of hills.  
Again, the consultants experienced conflict with their assumptions about this area of the curriculum, 
including the importance given in English mathematics education and in the research field to 
making links between different topic areas and to helping students to move between different 
representations of mathematical constructs (e.g. Skemp 1976; Acevedo Nistal et al. 2009). For 
example, it was difficult to accept that students in Kazakhstan were expected to calculate the 
coefficient by purely algebraic means without any reference to the geometry of the line. Finding a 
way to resolve our differences is still in progress.  
Example 3: Adjacent angles 
Our third example also involves angles, or, more specifically, the term adjacent used in the context 
of the study of angles and triangles. In England, the most common use of adjacent occurs when 
working with right angled triangles, distinguishing the side adjacent to a given angle from the 
opposite side. Teachers in English schools will often support students to understand the word 
adjacent by reference to its everyday equivalent next to. The term adjacent itself is not commonly 
used in everyday speech but is found in a range of formal contexts in English so is likely to be 
familiar to secondary school students. In Russian, a similar use for distinguishing the shorter sides 
of right angled triangles is found, translating adjacent as прилежащий. Etymologically, the 
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Russian term can be interpreted as ‘lying next to’ but прилежащий is an archaic word, now used 
only in mathematics. In both English and Russian, adjacent (прилежащий) angles are defined as 
non-overlapping angles with a common side and vertex, although this usage is not common in 
schools in either England or Kazakhstan. 
Our problem arose when we began to address the curriculum objective given in the English version 
of the curriculum as “know the definition of adjacent and vertical angles, recognise and draw 
them”. We all initially believed that we understood this objective but soon found that we were at 
cross-purposes. The consultants and the author team needed to find a common understanding of this 
objective. 
It eventually emerged that the origin of our difficulty lay in the fact that there are two mathematical 
terms in Russian, both of which are translated into English as adjacent. In the Russian version of 
this particular curriculum objective, the word смежный was used, not прилежащий. This word is 
found in everyday usage; смежный is equivalent to bordering or close (e.g. смежные участки – 
neighboring plots), making adjacent an appropriate translation. In mathematics, however, the term 
смежный is used in a specialised way to refer to adjacent supplementary angles, that is, angles 
with a common side and vertex, whose two other sides lie on a straight line. In English schools, 
such angles would be called angles on a straight line. In this case, once the linguistic issues were 
understood, we were able to proceed relatively smoothly to a common understanding of the topic as 
we all identified angles in this particular relationship as a distinct object of study for Grade 7 
students. 
Concluding discussion 
The SET project started with an assumption that the consultants from England were ‘experts’ – 
often referred to by the NIS team as ‘trainers’. Although there was agreement that the project 
should recognise, respect and make use of the ‘local’ knowledge and experience of the Kazakh 
authors, the location of ‘expertise’ initially created an asymmetry in the status afforded to the kinds 
of knowledge brought to the project by the two groups. On starting to work together, however, it 
was immediately apparent that the success of the project depended on negotiating a common 
understanding of the mathematical content of the curriculum that would enable teachers in 
Kazakhstan to make effective use of the pedagogic developments that we hoped the new textbooks 
would embody. Coming to this common understanding required deep and flexible engagement by 
both English and Kazakh team members, each reflecting on their own well-established 
mathematical knowledge and seeking to understand the different conceptions of others. Without a 
common language, the work of the interpreter/ translator has been crucial, not only in the basic 
sense of allowing us to speak to one another, but also making use of his expert understanding of 
languages in order to help us all to probe the differences in how language is used to map the 
mathematical world in English and in Russian. 
In this negotiation the project of authoring a textbook across cultures has drawn attention to: 

• how much we take for granted common understanding of words – within our own language 
as well as across languages and cultures; 

• the fact that we are not always clear ourselves about how we use words and the wider 
implications this use may have. 

It has also forced us to face up to and question our assumptions that our own mathematical 
meanings are correct. There are alternative ways of conceptualising mathematics, each of which has 
different consequences. Encountering and exploring these alternatives has enabled all of us to 
become more aware of our own conceptualisations and to develop a broader understanding of the 
mathematical affordances of alternative ways of speaking.  
Whereas mathematics education researchers have previously considered the mathematical 
affordances of different languages, such studies have generally focused on non-European languages 
and on broad characteristics of everyday usage rather than on the details of the mathematics register 
(e.g. Barton, 2008). Comparison of European and non-European languages can highlight major 
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structural differences, such as those described by Lunney-Borden (2011) for the North American 
language Mi’kmaq, that immediately raise questions about cross-linguistic and cross-cultural 
communication. Nevertheless, there is a common assumption that, once we start to deal with formal 
mathematics, we all share common meanings.  
We can never hope to understand Euripides plays in the way they were understood by their original 
audiences, but Euclid’s Elements speaks to us as clearly as it did to his contemporaries. Chinese 
poetry is untranslatable; but T.D Lee’s lectures on particle physics and quantum field theory, 
originally given in Chinese, lose nothing in translation to English. (Layzer, 1989: 126) 
However, the coming together of two traditions with highly developed mathematical cultures and 
two languages, English and Russian, both Indo-European languages with highly developed 
mathematics registers, challenges Layzer’s claim and highlights the fact that mathematics is not a 
universal language. Cross-linguistic collaboration demands translation between languages but also 
close attention to possible differences in the uses of words that appear to be equivalent and a 
recognition that we do not all categorise or conceptualise mathematical phenomena in identical 
ways.  
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INTEGRATING THE CONCLUSIONS OF TEACHERS’ 
FEEDBACK INTO THE NEW MATHEMATICS TEXTBOOKS 

GERGELY WINTSCHE, DÁNIEL KATONA and GERGELY SZMERKA  
Abstract 
We present a short overview about the current trends of the development of mathematics textbooks. 
Afterwards, we discuss the historical circumstances of the relatively new Hungarian textbook 
market. The first author has developed new learning tools within the framework of the Social 
Renewal Operational Programme (SROP) 3.1.2/ B-13 in Hungary, funded by the European Union 
between 2013 and 2016, which project involved not only the writing and printing of new textbooks 
and constructing their digital background materials, but also the exploration of teaching practice in 
connection to the usage of the new textbooks, collecting and analysing feedback, and monitoring the 
teaching process. The present paper focuses on the usefulness of official feedback on the 
mathematics textbooks, collected from teachers, and a short summary is presented about the 
changes in the revised textbooks influenced by the feedback. 
Keywords:  textbook development, mathematics textbooks, teachers’ feedback, SROP project 
Acknowledgement. We would like to thank the other authors of the textbook series: Veronika 
Gedeon, Beáta Tamás, Eszter Paróczay, László Számadó and Anna Szalontay. 
 
1. Theoretical Background – Teachers’ Role in Textbook-Edition 
In the textbook development process the textbook is not the only participant. As it is mainly for 
enhancing the teaching and learning of mathematics, being mainly used in schools and at homes,  
teachers and students are also decisive participants of the process. This idea is formulated in the 
form of the didactical triangle (Rezat 2008, p. 177, Schoenfeld 2012). It can be further expanded by 
a new dimension, the mathematical knowledge, into a tetrahedron, as it was presented by Valverde 
(Valverde et al. 2012). We suggest a little bit more elaborated model, where the didactic expert is 
placed in the centre of the tetrahedron (see Figure 1). 
According to the traditional way of developing textbooks in Hungary, the materials have been 
created by small groups of didactical experts and/or teachers, and have reflected solely their attitude 
to and view on teaching. In this approach, mainly the textbook and the didactic expert vertices of 
our tetrahedron are the active participants of the development process. 
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Figure 1. The expanded didactic triangle 

In our project a great emphasis is put on giving a more decisive role to the teacher vertex in the 
textbook development process. 
The literature of textbook development considers also other participants, such as parents or the 
government which are out of focus in this paper. 
The available resources, the new tools of the 21st century, the accelerated and broadened ways of 
communication resulted a highly broadened set of resources and possibilities available during the 
textbook development procedure too than that of even only 25 years ago. That is, the new digital 
resources in the 21st century provide new means for designing and sharing teaching materials. 
(Rocha et al., 2017)  
Although there are many examples of the co-working process of textbook writers and teachers, the 
authors usually collaborate with only 2-5 teachers who are familiar with the methods of the 
textbook writers, they can almost read in each other’s minds. These circumstances of the 
organisation of the development processes are really useful for the birth of an organic and unified 
textbook, they lack the advantages of reflecting different approaches. 
Even & Olsher (2014), Olsher & Even (2014) and Even et al. (2016) summarize how teachers can 
take part in the process of the textbook-edition, depending on the main goals of the project. They 
aim at creating an environment, in which dialogue can be born between curriculum developers and 
teachers. Their main goal can be to make the teachers participants of the joint-editing work of the 
textbook or collect possible changes suggested by the teachers. 
The textbook development project in the centre of the present paper has a lot of connections with 
other fields of textbook research. For instance L. Fan (ICMT – 2010) similarly to our beliefs, also 
explores the textbook research as a new and colourful scientific field. 
Partial, but fundamental parallels can also be drawn between our project and the Symposium C of 
the II International Conference on Mathematics Textbooks Research and Development which 
focused on teacher-resource use around the world. For instance, although today even the need and 
reason for the existence of textbooks may be questioned, our project has been based on a strong 
belief in the need for textbooks, similarly to projects presented at Symposium C. “As in many 
countries, in Brazil, teachers are heavily influenced by textbooks. They have being fundamental to 
teachers decision on which contents must taught as well as the instructional approach to be 
developed in class.” (Assis & Gitirana 2017)  
Our paper also focuses on the “bidirectional relationship” that was mentioned in many referenced 
article (Steenbrugge et al. 2017). However, our method was more than solely collecting the 
opinions and suggestions of teachers working in the project, and to decide what we can change in 
the textbook in the light of these suggestions. Our testing teachers were chosen from all around the 
country, to represent all types of towns, villages and schools. The teachers volunteered, they were 
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completely independent, moreover, they got a small amount of payment for their work. The 
independent selection procedure of the teachers may (probably) resulted in their different view on 
teaching, teaching habits and also different classroom cultures. That is why we received many 
different types of feedback, with sometimes completely opposing opinions, from the extremely 
supportive to the really discouraging and perfectly honest feedback.  
2. Historical Background to the Textbook Market in Hungary 
Before 1989 the textbook market in Hungary was entirely controlled by the state. It has changed 
after the democratic transition, the market became free (Fischerné & Kojanitz 2007). As a result of 
this, at the end of the decade (2000/2001), in one school year there were already 5151 textbooks 
published from 183 publishers. This oversupply was brought under regulation by the government, 
and in the school year 2011/2012 there remained only 53 publishers and 3712 publications, but the 
90% of this quantity has been produced by the 4 biggest publishers. It can be said undoubtedly, that 
after a stronger regularization which began in 2012, Hungary got in the middle with regard to the 
autonomy of the textbook markets in Europe. The list of textbooks, from which the teachers can 
choose for the students in a school year, has been significantly reduced, and now the distributor is a 
non-profit-making Ltd. owned by the state. (Pálfi 2016)  
The history of textbooks in Hungarian mathematics education provides a huge set of various types 
of problems (as exercises), as well as a colourful theoretical background to the teaching 
mathematics. All of these determined the development of textbooks of the last centuries. The new 
mathematics textbooks can be seen in the light of this tradition. 
3. A Textbook Development Project Supporting Social Renewal – The 
Srop-3.1.2-B/13-2013-0001 Project 
In the frame of the Social Renewal Operational Programme (SROP), between december 2013 and 
november 2016, a complex research on, and development of new teaching materials were 
implemented in Hungary, mainly organized by the Hungarian Institute for Educational Research 
and Development (HIERD), including the development of new mathematics textbooks that meet the 
requirements of the new National Curriculum introduced in 2012. In the initial planning phase, five 
university teams undertook studies about the basic concepts of textbook development in the 21th 
century, on the basis of which the main ideas were summarized and the common goals, as well as 
the conceptions of the principal1 school subjects were created.  
Our main goals were:  
• Support the literacy competency as a base of other competencies. 

• Communicate understandable mathematics to the students. 

• Build methodology recommendation into the textbooks (games, group work, outlooks, etc.). 

• Organise teacher trainings. 

The 3-year-long project consisted of the following phases. After a development-based research, 
pilot versions of the new textbooks were written, tested, evaluated, and re-edited to the final 
versions. One of the most decisive characteristics of these new textbooks was that a considerable 
number of school teachers were involved in the development process. The features and results of 
this contribution is the main issue of this paper; accordingly the present focus is on the testing, 
evaluating and re-edition phases. The SROP 3.1.2-B/13-2013-0001 project also aimed at connecting 
the development of ICT techniques and the printed versions, by planning, developing and testing 
the National Education Portal (NKP). 
Our main research question in connection with this textbook development process was about the 
ways and usefulness of integrating the conclusions of teachers’ feedback into the new textbooks. 
Therefore, in the present paper we survey the main phases of the development process, in several of 
                                                                            
1 Compulsory for all and taught in considerable hours per week. 
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which teachers as users and evaluators play a crucial role. We also present, interpret and evaluate 
the collected teachers’ feedback. 
4. Methods 
The main universities in Hungary conducted studies in order to lay down the fundamental 
guidelines for the SROP textbook development programme before it was launched. Most of these 
studies, e.g. (Vásárhelyi, 2013) emphasized the crucial importance of collective thinking of teachers 
and students, as well as the significance of the cooperative development of digital support. These 
studies reinforced our belief that teachers and students should play a leading role in the 
development procedure. The main milestones of the project were the followings. 
First year: Planning and creating the first, pilot versions of the textbooks and workbooks for grades 
1-2, 5-6, and 9-10, according to the Hungarian school system. 
Second year: Testing the created pilot books by 50 teachers for each subject, collecting feedback 
and creating the pilot textbooks for grades 3, 7, and 11.  
Third year: Rewriting and re-editing the pilot textbooks written in the first year, based on the 
teachers’ feedback, and creating the pilot books of the series for grades 4, 8 and 12. (Wintsche, 
2015) 
During the project, we received feedback in the following forms. 
• Before use form (about the expectations of the teachers) 

• Quick responses 

• Work logs (detailed questionnaire after every lecture) 

• Interviews and workshops with testing teachers and students 

• Personal interviews 

• After use form (about the general opinions and impressions of the teachers) 
The whole SROP project covered the main school subjects, namely history, Hungarian language 
and literature, mathematics, biology, chemistry, physics etc. with 134 textbooks and workbooks for 
grades 1-12. The present paper, in the followings, focuses only on the textbooks and workbooks of 
mathematics for grades 5-12. 
5. Results – to change, or not to change, that is the question 
More than 20,000 pieces of feedback per mathematics textbooks and workbooks were collected. We 
classified the feedback, using categories such as misprints, errors, theoretical problems, didactical 
problems, constructive suggestions and good practices. Some of the proposals were useful, creative 
and definitely worthy to be integrated into the re-edited textbooks during the revision process, and 
we got an overall picture about the expectations and wishes of the teachers. Here we present some 
typical examples of teachers’ feedback and the reactions of the textbook developers. 
We accepted the feedback and changed the relevant part of the textbook:  
Feedback 1: “The students need to meet place value earlier. It would be better to change the order 
of the first three lessons.” 
Answer 1: It could be right and there is not any obstacle for it. We changed the order of these 
lessons, we solved this problem. In the first version, the book introduced decimal numbers before 
properly defining some concepts such as decimal place value, in order for raising students’ interests 
and building first on their intuitive understanding before introducing the formal definition. 
However, we accepted that it did not match the majority of the users’ teaching style. 
Feedback 2: “I suggest that you enter a number of tens, hundreds, thousands, tens of thousands, 
hundreds of thousands, which can help the students in autonomous task solving and reduce 
uncertainty. There should be more examples. It would also be necessary to describe more complex 
numbers.” 
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Answer 2: We wrote some bigger numbers and more complex tasks into the lesson according to the 
wish. 
We rejected the feedback and the relevant part of the textbook remained unchanged: 
Feedback 3: „The story board text is not appropriate, because there are large and negative numbers 
in it and the students cannot read these numbers.” 
Answer 3: One does not have to cope with the stories completely before the chapters. Their role is 
only to brush up student’s curiosity and develop their literacy skills. (See Picture 1.) 
 

 
Picture 1. Chapter starting story boards to raise curiosity and develop literacy skills 

 
Feedback 4: „Separate plain and space geometry, as it is in other books. It is really confusing to 
cope with the square and the cube at the same time.” 
Answer 4: We do believe that the first perceptions and impressions of the children come from the 3 
dimensional space and it is natural to them. We live in this space and plane geometry is (more) 
imaginary and more abstract. We think that the early separation of space is one of the reasons of the 
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weak orientation level of the children. We separate the 2 and 3 dimensional geometry only in the 7th 
and higher grades. 
There were numerous different wishes and we couldn’t satisfy everybody. Here we quote some 
typical contradictory wishes: 

Feedback 5: “I like that the introductory 
tasks are simple, but interesting, like the 

ones with the magic squares.” 
vs. 

Feedback 6: “The introductory task with the 
magic squares did not offer too much help for 
solving the later exercises of the lesson. You 

better omit it.” 
Feedback 7: “It was really useful and 

entertaining to meet the ancient numbers 
from Egypt. The students really liked 

drawing them.” 

vs. 
Feedback 8: ”It was completely boring and 

unnecessary to work with the Egyptian 
numbers that are used nowhere.” 

 
In these situations we mainly took the majority opinion into account, but in some cases we finally 
decided on our own didactic reasons, even if these were against the major wishes.  
A great proportion of the wishes were about making the exercises easier, or at least inserting easier 
ones too. We could not completely take these kinds of wishes into account. We agree with those 
testers and evaluators who commented that easy and difficult tasks are both needed for 
differentiation. The textbook’s aim cannot solely be serving the needs of the average students. It has 
to work for the gifted ones as well. Therefore, besides inserting easier tasks, we kept the more 
difficult problems too. 
For the sake of completeness, we quote more pieces of feedback to show the wide range and 
different types of reflections.  
Feedback 9: “The second problem of the workbook (5th grade 3rd lesson) wasn’t clear for us. We 
got three different good solutions, 6232, 6333 and 6031. You should change it.” 
Answer: There are several mathematical problems with more than solutions. Students ought to get 
used to it.  
Feedback 10: “The group work would be perfect but we don’t have time for it. If I got everything 
prepared in advance, I could imagine dealing with the task. But we did not have enough time, as I 
mentioned.” 
Answer: We think it is reasonable to have optional kinds of tasks, like the group work mentioned 
above, which may be eliminated due to time constraints, depending on the demands and needs of 
the particular student group. 
Feedback 11:”I had basically positive expectations, but of course you are also afraid of anything 
new. Applying the textbook was easy and successful, especially some sections, like the ones 
connected to geometry.” 
Answer: Many thanks. 
In summary, we can state that the three most frequent and most important changes in the textbooks 
were the followings. 
• The number of easy problems at the end of almost every lesson have been highly raised. 

• The sequence of some lessons or subchapters have been changed, moreover, new lessons 
have been created at some particular places. 

• More games, group work exercises, supplementary remarks, supplementary lessons and 
overviews have been created for the re-edited books. 

Besides these major types of changes, and of course the correction of detected errors and misprints, 
some other important modifications also worth mentioning: 
• Some pictures and figures have been changed 
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• Some tricky, more challenging problems have been modified 

• Final tests have been created for each chapter 

• More lessons have been created for annual revision 

6. Conclusion 
After the revision, the acceptance of the textbooks has increased. Figure 2. shows that the majority 
of the teachers realised the changes in the textbooks, that is why the diagram is right skewed. 48,5% 
(36,8%+11,7%) of the teachers considered the re-edited textbook to be better, and only 17,8% 
(4,8%+13%) said that it became worse. These data comes from the impressions of the teachers 
during the school years, when they used the revised mathematics textbooks for the grades 5 and 9. 
Finally, some opinions of testing teachers are presented about the procedure of the textbook 
development and the SROP project. 
”At last we can see an example when the opinions of colleagues do really matter. The book became 
better for us after the revision, and also for the students.” 
”Collecting the feedback nationwide is really useful because of the various students and teachers. 
The changes were reasonable, thanks for you to take our wishes into consideration.” 
”I am pleased to see that our works were not useless. I see that the editors preferred mostly those 
changes what we wished. ” 
 

 
Figure 2. Changes of teacher’s opinion during the school year 

The data in Figure 3. come from the feedback after the whole revision process. 

 
Figure 3. Changes of the teacher’s opinion after the revision (1 worst – 10 best) 

On the whole, the textbook development procedure, and particularly the re-edition process can be 
considered successful, based on the teachers’ feedback. The acceptance of textbooks by the testing 
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teachers has improved significantly during the re-edition process, resulting in more easily and more 
efficiently applicable textbooks, with a higher preference level among the teachers. On the other 
hand, considering the further development of the textbook development procedure itself, the 
evaluation of feedback would be more easily feasible, and could be conducted with a considerably 
lower budget, if the testing teachers are selected by a more precise and more purposeful method, by 
decreasing the number of (more or less) neutral opinions. For reaching this aim, our proposal have 
been accepted, and after the first two years of the development procedure, the number of testing 
teachers have been reduced to a selected 25 from the previous 50, for each subject. 
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AN ANALYTICAL FRAMEWORK FOR STUDYING THE 
IMPACT OF TECHNOLOGY ON THE USE OF MATHEMATICS 

RESOURCES IN TEACHING AND LEARNING 
IDA MOK and LIANGHUO FAN  
Abstract 
We have earlier proposed to include the technology principle as one of the six principles for textbook 
development and argued that in studying the impact of technology on mathematics curriculum one 
should include three questions: What to teach? How to teach? Why to teach? (Fan 2010, 2011). We 
analysed how technology was reflected in the mathematics textbooks in Hong Kong and found the 
impact of technology in the textbooks was a result of top-down curriculum reforms, mostly guided by 
the mathematical content in the curriculum and around three major categories: self-regulated 
learning platforms, IT activities using of different software and projects using internet resources 
(Mok 2014).   
Drawing on our earlier research and related literature in this area, this paper proposes a revised 
analytical framework for investigating the impact of technology in the use of mathematics resources 
in teaching and learning and discuss its implications in this field of research on textbooks.  
 
Introduction 
The development of technology in the field of mathematics education has been rapid and fast over 
the last few decades. There are significant changes with respect to the tools of demonstration, 
devices and display, tools for calculation, drawing and graphing, computer-assisted learning 
platforms and internet. Technology is obviously having an impact on different levels of curriculum, 
including textbooks and acting as an agent of change (Hutchinson and Torres, 1994; Gerhart, Peak 
& Prybutok 2015). Accordingly, we believe it is imperative to advance theoretical underpinnings, 
which have been largely under-developed, for research on the impact of technology on the 
development and use of mathematics resources. Drawing on our earlier research as well as related 
literature in this area, the purpose of this paper is to propose a revised analytical framework for 
investigating the impact of technology in the use of mathematics resources in teaching and learning 
and discuss its implications in this field of research on textbooks. 
This paper draws upon the results of earlier studies and consisted of two parts.  In Part 1, applying 
the framework presented by Fan (2011), the authors discuss the comparison of the textbooks in 
different places (China, Singapore, Hong Kong (Fan 2011, Mok 2104). The results showed the 
impact of technology in textbooks has been influenced by curriculum reforms in the Asian context, 
clustered around three major categories: self-regulated learning platforms, IT activities making use 
of different software and projects making use of internet resources.  In Part 2, the authors discuss 
the findings of the project “Fundamental challenges in using Digital Technologies in Secondary 
Mathematics classrooms: a comparison between different paradigms, over time, and between 



 The Impact of Technology on the Use of Mathematics Resources 

 353 

places” (called DTMC later)1 and discuss the malleable and robust features in mathematics lessons 
to in contrasting paradigms over time. Finally, supported with the earlier studies, we present an 
analytical framework for studying the impact of technology on the use of mathematics resources in 
learning and teaching. 
Theoretical Background 
As far as the impact of technology on the use of resources is concerned, we take into consideration 
in the theoretical background the factor of the development of technology over time that has 
significant changes in availability; the different development in the context of different topic areas 
(e.g., algebra, geometry, statistics), and the principles for textbook development (Fan 2010), for 
their significant influence on the epistemological and ontological nature of school mathematics.  

Development of technology 
Mathematics is often linked with technology. The relationship between mathematics and 
technology is indeed close and intertwined. The impact of technology on mathematics education, 
according to Roberts, Leung and Lins (2013), has gone through the stages from the slate to the web, 
bringing significant changes in the aspects of tools of demonstration, support of teaching and 
learning, the tools of calculation as well as the access of the virtual world via internet. With respect 
to tools of demonstration, there is significant enhancement and progress in the devices and the mode 
for display: blackboard, flip-chart, whiteboard and overhead projector OHP, computer, and all kinds 
of mobile devices today.  With respect to support of teaching and learning, there are the use of 
different manipulatives and tools, such as, straight-edge and compasses, blocks; these can be found 
in the computer and tablets. With respect to the tools of calculation, there are: slide rule, electronic 
calculator in the 70s and 80s; the computer algebra system CAS in the 90s and mobile devices 
bringing about incredible enhancement for information, storage, display and demonstration in the 
21st century. Finally, there is the access to the Virtual Worlds. Via the internet, we can access 
knowledge with convenience in all kinds of formats.  
Different development in different topic areas 
Algebra. When we look into the content of the mathematics per se, there are changes. For example 
the Computer Algebra Systems (CAS) has changed the role of algebra in the school curriculum 
(Heid, Thomas & Zhick 2013). CAS makes possible the symbolic manipulation linked with 
graphical, numerical, and tabular utilities and the symbolic links to spreadsheets and dynamical 
geometry programs; allowing for new explorations of mathematical invariants, active linking of 
dynamic representations; engagement with real data, and simulations of real and mathematical 
relationships. 
Geometry. With respect to geometry, the invention of Dynamic Geometry Software (DGS), such as, 
Sketchpad, Cabri, Geogebra, has significant didactic and research implication (Sinclair & Robutti 
2013). Proof and verification is no longer dominated by the traditional Euclidean approach.  The 
dragging and measurement facility in the DGS platform has change the possibility and potential for 
students making conjectures, exploring properties and relationship in geometry.  
Data handling. With respect to data handling, the opportunities for using real data and the 
availability of statistical softwares are greatly increased because of websites and apps. Students can 
easily get access of statistical tools and authentic data in the internet. For example, the Gapminder 
website (www.gapminder.org) for which Hans Roslings’ project has made 200 years of global data 
readily accessible for exploring trends and relationship between a range of variables, related to the 
world poverty issues. Students can easily visualize and experience the power and joy of statistics in 
their exploration of global issues.  
                                                                            
1 Acknowledgement: The project is funded by General Research Fund, the Research Grants Council of Hong 
Kong, China. Mok, Ida Ah Chee, “A Change of Paradigm: A Close-up at Learning Tasks” in the 
International Conference for Chinese Association of Mathematics Education, Wuhan, China, 2016. 
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Last but not least, with the development of internet, sharing and exchange of knowledge in public is 
highly feasible and within a community knowledge can be developed and rapidly shared, hence, 
fixed and tangible resources are no longer considered as sustainable competitive advantage for such 
assets may quickly available to the others (Sharratt & Usoro 2003). As a result, self-learning 
capacity and collaboration skills become important. 

Six principles of textbook development 
At the 2010 APEC Thailand Conference, Fan proposed six principles for textbook development 
including Curriculum Principle, Discipline Principle, Pedagogy Principle, Technology Principle, 
Context Principle, and Presentation Principle (Fan 2010). Later, in his study of the impact of 
technology on mathematics textbooks in China and Singapore for the last 15 years, Fan (2011) 
offered an operational definition for ICT for studying textbooks that included: calculator, computer, 
internet and software, and argued that in studying the impact of technology on mathematics 
curriculum one should include three questions:  
• What to teach (content of learning) 

• How to teach (a tool to facilitate learning) 

• Why to teach (an objective of learning) 
The six principles can be integrated into the three questions in studying for the impact of 
technology on textbooks and resources, e.g. these principles may apply in an integrated manner, 
thus, changing the outlook as well as the depth of the students’ experience of a specific content in 
the curriculum where technology may be applied, how technology may as a tool to facilities the 
learning of the content, what goals the students may achieve in carrying out the technology 
integrated tasks or activities, whether we want them to learn the mathematics or the technology.    
Study one: Analysis of textbooks of different places (China, Singapore, Hong Kong) 

 (1) Fan (2011) reported a comparison of two series of textbooks: China and Singapore. 
Findings from the current mathematics textbooks (China) show that there are mainly three types of 
use of technology: 
• Use of scientific calculators to find value, to calculate, and to explore (Purposes: for what to 

teach, why to teach, and how to teach) 

• Use of Internet as a resource (often optional only), mainly for reading, project tasks, and 
exploration work (Purposes: for how to teach/learn) 

• Use of specific software such as excel and GSP (Sec. 3) to construct, calculate (average), and 
graph (Purposes: for what to teach, but also for how to teach) 

Findings from the current Mathematics Textbooks (Singapore) shows that largely similar to 
Chinese textbooks, there are also mainly three types of use of technology: 
• Use of scientific calculators to find value, to calculate, and to explore (Purposes: for what to 

teach, why to teach, and how to teach) 

• Use of Internet as a resource (most times optional), mainly for exploration and project tasks 
(Purposes: for how to teach/learn) 

• Use of specific software such as excel, spreadsheet programme, a graphing software, and a 
dynamic geometric software (but not specific name given) to construct, graph, and explore, 
often for In-class Activities (Purposes: for what to teach and how to teach) 
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(2) Extension of Fan’s work (Mok 2014) 
Fan (2011) offered an operational definition for ICT for studying textbooks that included (a) 
calculator, (b) computer, and (3) internet and software. Based on Fan’s work, Mok (2014) carried 
out an analysis of one of the most popular series of textbook (Grades 7-9) in Hong Kong which 
included a CD-ROM produced by the publishers accompanying the textbook, the major types of 
technology are:    
• Calculator: Using the calculators to find value, to calculate and to explore. 
• Internet E-tutor: The E-tutor in the publisher’s website providing e-guidance for the selected 

questions in the revision exercises. 
• Internet: Additional resources and information for projects. 
• Software, Internet and the CD-ROM: One type of activities uses in the Internet for exploration 

and these are guided by the activity sheets and files in the CD-ROM. Another set of activities 
can be carried out in the computer offline that use software such as Microsoft Excel, Geogebra 
or Animation embedded in the CD-ROM for exploring the mathematical concepts. The 
activities are guided by the activity sheets and the files in the CD-ROM. 

• Other supplementary materials provided by the publishers: Other resources include, glossary, 
activity sheets, power-point presentation files and drilling program. 

By comparing the work of Fan (2011) and the work of Mok (2014), there are some further 
development in the use of IT on textbooks: (a) providing an interactive E-tutor on the internet by 
the publishers, and (b) the publishers’ production of supplementary materials that enhanced the 
display of content in teaching and provided further practice for students.  

(3) Some examples from the analysis of Hong Kong textbooks 
Figure 1 shows the software, internet and IT activities are identified in the curriculum document in 
advance and suggesting a certain direction that may possible change the nature and process of 
learning in the classroom. Some examples that may have a significant impact on what and how the 
teacher may teach a topic are listed here and they includes input of technology in symbolic 
manipulation, spreadsheets, and engagement of students in exploratory work or self-study materials.   
• Activity using GeoGebra such as transformation and trigonometry (figure 2), 
• Using an animation to justify the “Identity of the difference of two square” (figure 3), 
• Exploring the value of  the square root of 2 in a e-worksheet (figure 4), 
• E-tutor: A student self-regulated interactive platform with exercises supplied by the publishers.  
• Projects. 
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Figure 1. The topics highlighting the use of technology in the Hong Kong textbooks. 
 

 
 
 
 

Figure 2. Example of using Geogebra 

 
Figure 3. Using animation to justify the identity of 

the difference of two squares. 
 

 
Figure 4. A e-worksheet for exploring the value of the square root of 2. 

 
The E-tutor platform. It is worthy to mention a new feature, the E-tutor platform developed by the 
publishers, which was delivered to the students via the internet. At the end of each chapter, there 
was a revision exercise with support was provided by the E-tutor on the internet. The E-tutor 
provides: 
• A collection of problems of varied difficulty for the topic is provided.  

• Self-study guide: The e-tutor provided hints, outline of method and a list of the knowledge that 
they needed to solve the problem, serving a reference to a specific parts i the textbooks for 
further reading.  

• Students’ autonomy: The students might login in their accounts to use the e-tutor in the 
publisher’s website.  

Comparing with the findings of the earlier work of Fan (2011), the findings in Mok’s study shows 
that the development of technology in textbooks and mathematics resources are picking up 
momentum. To conclude briefly, the publishers play a pivotal role in making suggestions and 
production that may influence how the teaching and learning in the lessons, especially for those 
teachers who are not ready to produce their own teaching materials. There is a trend for providing 
more opportunity for exploratory work, mathematics work that can make use the advantage of 
graphical interpretation and self-regulated activities.  
A contrast of paradigms over time: What are malleable or robust in mathematics 
lessons? 
Mathematics had been a long established subject, its content is pretty stable, curriculum in different 
places covers similar topics at similar levels (see TIMSS 2015 Encyclopedia, 
http://timssandpirls.bc.edu/timss2015/encyclopedia/countries/hong-kong-sar/the-mathematics-curri
culum-in-primary-and-lower-secondary-grades/). For example, for some mathematics topics in the 
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case of Hong Kong, over the past twenty years, despite the change of syllabuses, some similar 
problems might be used in the lessons for demonstration and student work. How may the input of 
technology make a change in the use of such mathematics problems? What features are malleable or 
robust in mathematics lessons? We seek answers from the findings of the DTMC project. 
The DTMC project aims to compare the variation in paradigms of mathematics lesson with and 
without an application of digital technologies over two different period of time (2000 to 2002 and 
2015 to 2016) in the Hong Kong context. Lessons videos of competent teachers collected with three 
cameras-approach (teacher camera, student camera and whole-class camera) in a naturalistic 
manner. The Learner’s Perspective LPS design was employed for the research methods and the 
video data were supplemented with post-lesson teacher and student interviews. The 2000 set of data 
consist of 30 grade eighth lessons of three competent teachers and the 2015 set of data consist of 16 
grade eighth lessons of two teachers with both lessons using IT and not using IT. To show the 
contrast of snapshots over two paradigms, an illustration is given in figure 5 which shows some 
snapshots of the lesson events in the lesson in 2000 and the lessons in 2015 (figure 5). The 
snapshots were selected specially to show that there were changes but there were something that are 
persistent and supportive to learning, and were much appreciated by students. These features were 
clear explanation and demonstration in teacher-talk and the between-desk instruction while students 
doing problems during the lessons. In the 2015 lessons, in fact many episodes were quite similar to 
the picture in 2000, the activities such as between-desk instruction, clear explanation, board work 
mixed with Geogebra display happened very often. The picture in figure 5 was chosen for the 
teacher created a special lesson for the topic trigonometry, there was an activity in which the 
students used the apps in the ipad to measure the height of a building and this brought them doing 
mathematics outside the classroom. The students learn about the tasks the day before the lesson and 
they chose their own tools (apps) and sorted the measuring method. The findings showed that 
technology had given the opportunity for the teacher to create a special learning experience and the 
students showed great appreciation of this special experience the collaboration, hands-on and 
realistic nature of the activity. 

 
Figure 5. Some snapshots of Hong Kong lessons (2000 and 2015) 

Conclusion and Discussion  
The impact of technology on the use of mathematics resources was explored under the three 
questions framework. The investigations were carried out in an Asian context with a background of   
curriculum reforms. An explicit impact was found in the textbooks that often could be seen as a 
major resource. A quick change may be some topics and individual contents reflecting the 
developing technology trajectory in the mathematics curriculum. The change brings about certain 
direction for pedagogy and the nature of the content of the subject matter. On the one hand, the 
change in terms of contents were patches of insertion into the overall curriculum. These do not 
bring about much change in terms of content. On the other hand, the choice of the use of technology 
gives much room for the teachers to create special learning experience for students that may give 
students more opportunity for exploratory, application of realistic mathematics and self-regulated 
learning capacity. Figure 6 summarizes the revised framework we propose for investigating the 
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impact of technology in the use of mathematics resources for answering the three questions: What 
to teach? How to teach? Why to teach? 

 
Figure 6. A proposed framework for investigating the impact of technology on the use of mathematics 

resources 
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LEARNING MATHEMATICS WITH VIDEOS 
LILIANE XAVIER NEVES, MARCELO DE CARVALHO BORBA and HANNAH 
DORA DE GARCIA E LACERDA 
 
Abstract 
In this paper we discuss about how students’ interaction with digital videos has changed the types 
of educational materials used for learning. Elements that characterize audiovisual materials take 
educational tools to a new level and make videos, infused with visual elements, orality, gestures, 
and sounds, a source of educational information. The research of "Digital videos in distance 
learning mathematics" focuses on these main ideas and proposes, from a Freirean perspective, the 
joint production of videos by students and teachers to express mathematical content discussed in the 
classroom. Videos produced by a collective of humans-with-media may become a digital object 
from which others can learn. Considering that education must be connected to digital wisdom, in 
these times when our sense distinction is being transformed, this research focuses on an annual 
video festival that creates a locus for sharing these digital educational materials. 
1. Digital Videos and Mathematics Education 
For decades, the use of technologies as a resource for teaching and learning mathematics has 
motivated discussions that have influenced many researches conducted in Brazil. Borba, Scucuglia, 
and Gadanidis (2014) report that changes in society due to technological innovations and the 
democratization of the Internet have also begun to be reflected in classroom. The authors organize 
these changes, with attention to the use of digital technologies in the teaching and learning of 
mathematics, into four phases called "phases of the digital technologies in mathematical education"; 
the last still persists. 
According to these authors, the first phase of digital technologies in mathematics education began 
around 1985 with the use of LOGO software, and it was also marked by the emergence of computer 
labs in schools and the technological training of teachers. The popularization of personal computers 
signaled the beginning of the second phase with the production of educational software, especially 
software in the area of dynamic geometry. This led to new possibilities that required a 
reorganization of pedagogical methods used by then, along with a change in the teacher's usual 
posture in classroom. The software created in this phase provided an analysis of the behavior of 
functions from experiments with technologies exploring the dynamic and visual characteristics of 
software in a mathematical research environment.  
The Internet was introduced in the educational scenario initially as a tool to search for information 
and also as a means of communication, which Borba, Scucuglia and Gadanidis (2014) claim 
characterizes the beginning of the third phase of digital technologies in mathematics education. At 
this stage, the production of knowledge took a new seat regarding the notions of time and space 
related to teaching and learning, with the provision of distance learning courses for teachers. 
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Mathematical thinking started to be developed in the virtual environment as well, and researchers 
began to question how mathematics is transformed in this new environment capable of integrating a 
variety of media artifacts. 
In the fourth phase of technologies in mathematics education, the idea of mathematical knowledge 
being produced in the virtual environment intensified with the improvement of connection quality. 
Society had been transformed by increasingly rapid technological innovations and the 
democratization of access to these new technologies. At the beginning of this phase, the terms 
digital natives and digital immigrants emerged. Prensky (2001a) characterized “students of the 
twentieth-century as natives of a digital language of computers, video games and the internet.” On 
the other hand, there were those who were not born in a digital world but who would embrace the 
new technologies in their lives. These the author termed digital immigrants.    

It is now clear that as a result of this ubiquitous environment and the sheer volume of their 
interaction with it, today’s students think and process information fundamentally differently from 
their predecessors. These differences go far further and deeper than most educators suspect or 
realize. [...] we can say with certainty that their thinking patterns have changed. (Prensky 2001a, 
p. 1) 

In fact, for students surrounded with environments permeated by digital technologies for a long 
period of time, the way of producing knowledge was generally different.  
In this scenario transformed by digital technologies, we highlight the definition of educational 
technologies approved by the Association for Educational Communications and Technology 
(AECT) as the "study and ethical practice of facilitating learning performance and improvement 
through creation, use and correct application of technological processes and resources " (Leite & 
Aguiar 2016, p. 36). The notion of educational technologies has a broad dimension as being a 
resource that potentiates changes in the process of teaching and learning. Yet digital videos bring 
different possibilities for the development of educational activities. 
Oechsler (2015) grouped the researches involving the use of videos in the educational field and 
emphasized, without focusing on a specific discipline, the use of cinema in the classroom. The 
survey also indicated the use of videos in teacher training excerpted from class films to group 
discussions of teachers, beginners or not, in order to predict actions and bring reflections on themes 
and dynamics to their classes. Also mentioned was the use of videos in qualitative research for the 
collection and analysis of teaching experiments, since they provide details in short periods of time 
that can be seen repeatedly, as well as and the visualization and production of videos in the 
classroom associated with the notion of Digital Performances Mathematics (Borba, Scucuglia & 
Gadanidis 2014).  
A viewpoint of teachers using videos as digital educational objects in math classes was reported in 
the research of Amaral (2013). This qualitative research focused on the analysis of digital 
educational objects of specific textbooks with respect to the specialized mathematical knowledge of 
the teacher involved in the exploration of such objects. The results indicated that the use of digital 
educational objects, including videos, was associated with the domestication of the media and 
promoted little interactivity. According to Borba, Scucuglia and Gadanidis (2014, p. 41), "the 
domestication of the media is related to the use of technologies in the same way and anchored in the 
same practices that were conditioned by other media." When we domesticate a medium, we stop 
using its potential that surpasses the old media, such as using a video lesson in a class where the 
teacher is present. 
Digital videos make it possible to combine visual elements, graphics, orality, gestures, body 
expressions, and sounds with the purpose of transmitting an idea. Jewitt, Bezemer and O'Halloran 
(2016, p. 411) indicate that “the term ‘multimodality’ was used to highlight that people use multiple 
means of meaning making.” Thus, considering the specific potentialities of this technology, it is 
possible to visualize different mathematical activities that can be developed in the classroom. 
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The video has been implemented as an educational technological resource in this sense. Particularly 
the possibility of the videos to unite several forms of expression, consequently enables the students 
to reflect deeply on mathematical content when they produce them. 
Ferrés (1995) says that the video stands out as something that is not only related to the media, but 
also to the language, since it requires the interlocutors to express themselves in audiovisual form, 
where several modes are used synchronously in an aesthetic synthesis with concordant logical 
significations (Wohlgemuth 2005). We believe that to carry out this synthesis in order to express a 
mathematical idea in a video, the student, working together with the teacher, should mobilize 
different aspects of the mathematical concept in question, producing a didactic resource at the end 
of the process that will serve as support for other students learn. 
2. The reorganization of thinking in the process of producing videos with mathematics 
The process of organizing ideas to express it in an audiovisual format takes us the question of how 
videos influence the way knowledge is constructed. Borba and Villarreal (2005) argue that thinking 
is collective and influenced by human-media systems. The authors emphasize the importance of 
thinking about the contributions of all the elements involved in learning. In addition, they consider 
that the media shapes the human being and, conversely, the human being shapes media as well, thus 
influencing the way knowledge is generated. For example, in the production of mathematical 
knowledge within an environment that makes use of digital technologies, everything happens in a 
qualitatively different way from the environment where only pencil-paper is used.  
We realize that the production process of videos reveals a moment of organization of the ideas that 
will be expressed in the audiovisual format. This organization of the thought involves mathematical 
knowledge and elements that make up the video defined in a script as well as the resources used to 
produce the video. All are used in order to achieve a synthesis in which the mathematical idea is 
best expressed. In this movement the mathematical content must be seen and reviewed in different 
ways until it arrives in the ideal format according to the purpose of the video. This takes us to the 
metaphor humans-with-digital videos. 
Prensky (2001a, 2001b) characterizes twentieth-century students as natives of a digital language of 
computers and the Internet, and affirms that today’s students think and process information 
fundamentally differently from their predecessors. Thus, we think the collaborative production of 
videos with mathematical content among students and teachers as a possibility of knowledge 
sharing. Students (digital natives) and teacher (digital immigrant) exchange technical knowledge  
 
 

Figure 1: Shared knowledge in the production of videos on Mathematics.Source: The author himself. 
about the necessary technologies required for audio-visual production and mathematical knowledge 
(Figure 1). In the process of video production, when seen as a collaborative activity 
betweenstudents and teachers, the student exposes his/her knowledge about manipulation of new 
technologies. Here we refer to the student as a digital native. In this process the teacher shares the 
theoretical knowledge and helps in the organization of ideas in order to express mathematical 
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content in the audiovisual format, which is the purpose of this digital didactic material being 
produced. In addition, the student has the opportunity to share his/her practical knowledge obtained 
from experiences and observation of everyday situations. This enriches the student-teacher 
relationship, since the teacher can better understand the student's universe, his/her previous 
knowledge and way of learning. All this contributes to the process of teaching mathematics 
specifically. 
The collaboration between teachers and students has been related to what Paulo Freire has for 
decades called a “horizontal relationship.” From this perspective, the actors involved in a given 
teaching activity jointly elaborate goals and procedures.  
With this in mind, we think about the possibilities of collaborative construction and use of videos in 
the training of mathematics teacher undergraduates, understanding that collaborating is the working 
together, all are supporting each other and aiming to reach common objectives negotiated by the 
group (Fiorentini 2013). We agree with Onuchic and Allevato (2009, p. 173) that “significant 
experiences lived by the mathematics pre-service teachers are reflected in classroom, determining 
the extent of the change that their future students will experience in practice.”  
The elements discussed in this section constitute objects of the research project "Digital videos in 
distance learning mathematics" carried out by researchers from the São Paulo State University 
(UNESP), Institute of Geosciences and Exact Sciences, Campus Rio Claro. 
3. The research on video production  
The research question for the project “Digital Videos in Distance Learning Mathematics” is what 
are the possibilities of collaborative digital video production by researchers, teachers, and students? 
With this question, we seek to understand the possibilities of collaborative construction and the use 
of videos, seen as multimodal artifacts, in the mathematics teachers’ training degrees of Open 
University of Brazil (UAB)1. In addition, the project includes actions such as mapping the way 
digital videos are used in UAB Mathematics degrees and actions to understand how students and 
teachers can generate videos that express their knowledge and serve as learning objects for others. 
The project also provides an analysis of the possibilities of the video festival, which was created as 
a locus for interaction between the university and schools that participate in the project. 
Initially, the problem developed in the research project "Digital Videos in the Distance Learning 
Mathematics" was related to the use and production of digital videos in undergraduate courses in 
Distance Learning Mathematics of the UAB. There was expansion of the research field to include 
classroom courses at UNESP, as well the basic school scenario in the state of São Paulo.  
This research project intends to intervene in distance learning mathematics courses and basic 
schools to encourage collaborative video production by mathematics pre-service teachers, tutors, 
teachers, and students. This intervention will result in digital mathematical videos that will be part 
of the “Festival of digital videos and mathematics education.” This action promotes the 
popularization of this type of production in schools and universities and favors the communication 
of mathematical ideas in the classroom, enabling qualitative improvements in the investigated 
scenarios. 
This action supports and justifies the challenge proposed by the research project "Digital Videos in 
the Distance Learning Mathematics" to take the idea of collaborative construction of videos with 
mathematical content to mathematics classrooms, considering their different models. The research 
also stands out for appreciating the communication in mathematical learning, a theme not addressed 
in the Brazilian researches related so far. 
We understand that research procedures such as interviews, participant observation, and 
intervention are conditioned by the vision of knowledge as well as by the goals themselves (Araújo 
                                                                            
1 “The Open University of Brazil is a system composed of public universities that offers higher education 
courses for the population that have difficulty access to university education, through the use of distance 
education methodology”. Available in http://www.capes.gov.br/component/content/article?id=7836. Access: 
September 2017.  
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& Borba 2013). Conversely, research procedures, equipment used, software, the question and goals 
help to shape what is meant by knowledge. It is in this sense that the research methodology is 
understood here as the amalgam between the vision of knowledge and the operationalization of this 
vision in a given investigation. The objectives presented above are associated with qualitative 
procedures. Knowledge originating from qualitative research is appropriate to bring silenced voices 
to the surface (Poupart et al. 2010).  
In this research, we performed interviews, participant observations in attendance and virtual 
environments, and interventions in undergraduate courses in mathematics of UAB and schools of 
Basic Education. With the intervention in the form of a collaborative work, we proposed and, at the 
same time, investigated aspects of the collaboration itself to produce materials that serve as 
expressions of learning and objects of teaching to those who produce and/or assist them. 
The project team is composed of the coordinating professor, a student of scientific initiation, two 
masters and six doctoral students. Within this research group, we practice what Lincoln and Guba 
(1985) call peer debriefing: researchers in the group discuss the interpretations made by a given 
researcher on the constructed data. In this way, knowledge is generated, though the subjectivity of 
individual interpretations is challenged by fellow researchers. Therefore, the analytical process is 
carried out in two dimensions: collective and individual. After switching individual perspectives to 
excerpts of raw data, we come together to analyze individual analytical work and to confront 
interpretations. These meetings give the collective character of analysis, because we often change or 
create new themes. 
Among the subprojects linked to the research project "Digital Videos in the Distance Learning 
Mathematics" under development, one doctoral subproject is focused on investigating the potential 
of artistic elements in the communication of mathematical ideas developed in videos submitted to 
the Festival. Two others have Basic Education as a research scenario. One, a doctoral subproject, 
investigates how videos collectively produced by teachers and students can be used as a form of 
expression for learning and as methods of teaching. The other, a master's one, discusses the role of 
video in the production of digital mathematical narratives of basic school students, from the 
perspective of developing their autonomy in relation to mathematical learning. 
Four other subprojects have their focus on the pre-service courses in mathematics of UAB. One 
doctoral student has the objective of investigating the particularities of the Festival, researching its 
impact on the students, teachers, tutors, and disciplines of the courses. From another perspective, 
based on communication theories, a master student seeks to understand how mathematics is 
communicated by students of one of these courses through audiovisual means. Another doctoral 
student investigates how the multiple representations are explored by undergraduate students in 
mathematics of UAB when they produce videos on Analytical Geometry. We also have another 
doctoral researcher investigating the use and production of videos, in the form of multimodal 
discourse, in the subject of Supervised Internship in another course from UAB. We are considering 
that the interaction between the aforementioned subjects can be enhanced in an environment 
promoted by the use of digital technologies and visual arts that merge as a way to enable the 
communication of mathematical ideas and expression of learning. 
Video research began to be explored in the Research Group in Informatics, other Media and 
Mathematics Education (GPIMEM) in 2006, with projects funded by national and Canadian 
agencies (SSHRC). In addition to the undergraduate courses in Distance Learning Mathematics of 
the UAB, the research proposed here also develops in Basic Education. The purpose of this 
interaction between these two levels of teaching is linked to interest in how videos, made 
collaboratively by students and teachers of UAB courses, will be used as a form of expression of 
their learning and as an object of teaching by their users. In collaborative work, leadership is shared, 
with co-responsibility for the conduct of actions. 
In Brazil, approximately half of the undergraduate courses use the distance learning modality 
(Brasil, 2013). Viel (2011) and Santos (2013) point out the limitations regarding the use of 
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technology in the pioneering course of distance pre-service teacher learning (in the online phase) 
within the public institutions. Among the limitations noted, there is a lack of interaction between 
students and between students and teachers. This fact justify the "proposal" of this research to study 
the possibilities of interaction between virtual undergraduates and undergraduates and teachers by 
means of digital videos. 
The dialogical position supported by the project highlights establishing a horizontal relationship 
between students and teachers, in the sense discussed by Freire in several works such as “Pedagogy 
of the Oppressed” (Freire, 1968). In the research carried out in the GPIMEM exploratory manner, 
we initially thought about the use of videos in education as a function of the teacher. Yet we quickly 
understood the need for video production to be a way for students to express themselves. Thus, we 
incorporated it into disciplinary evaluation processes and put ourselves, as teachers and researchers, 
in the role of also learning from students' expressions made through digital artifacts. 
"Digital wisdom," understood as the ability to produce meanings within a medium characterized by 
plasticity that continuously combines new forms of expression, proposed by Boll and Axt (2011, 
51), can become a useful concept to analyze the quality of undergraduate degrees in mathematics of 
the UAB. 
4. First Festival of Digital Videos and Mathematical Education 
As an activity related to the project, we held the First Festival of Digital Video and Mathematics 
Education as a way to create a space for virtual dialogue for mathematics undergraduates and basic 
learning students. With this festival, we also sought to connect with the virtual environment by 
creating an annual festival where videos are presented, using a multimodal discourse that includes 
usual text, usual filming, animation, and mathematical software. At the festival we had the 
participation of a judging commission formed by mathematicians, mathematical educators, artists, 
and members of the community. Virtual focus groups, interviews, and quantitative analysis of 
assessments were procedures used to produce the data in the festival.  
The First Festival of Digital Videos and Mathematics Education began in March 2017 with 
submissions and ended in September that same year with an awards ceremony. A total of 379 
students and 51 teacher participants submitted 118 videos. Of the 118 videos, 78 were produced by 
students of basic education, 31 by undergraduate students in mathematics, and 9 by students from 
other undergraduate courses. Of the 27 federative units of Brazil, representatives of 15 states 
participating in the festival, indicating the event had a significant reach. 

 
Figure 2: Number of videos participating in the event per unit of federation of Brazil. Source: Data of the 1st 

Festival of digital videos and mathematical education. 
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The videos were analyzed by a group of 8 jurors, including mathematicians, applied 
mathematicians, educators, mathematical educators, and artists, all who additionally discussed their 
impressions about the festival and the analyzed videos. These reports also constitute research data.  
There were 118 videos with mathematical content produced by student groups, most in 
collaboration with math teachers. The participant videos dealt with 2nd degree equation, topics of  
plane and spatial geometry, the concept of function, and also the particular cases of linear function 
and exponential function, trigonometry, matrices and systems, arithmetic progression, variation 
rate, symmetry, topics of mathematics history, and circumference, among others. 
The videos were analyzed and there was an opportunity for some correction and editing before the 
deadline for submissions. All 118 digital educational video materials produced for the First Festival 
of Digital Videos and Mathematics Education can be found at www.festivalvideomat.com. The 
videos were divided into two categories: Basic Education and Undergraduate Education. The Figure 
3 shows the image of the Festival site with some of the participating videos. 

 
Figure 3:  Picture of the videos of the 1st Festival of digital videos and mathematics education. Source: 1st 

Festival of digital videos and mathematics education site. 
The results of the project will be evaluated at different levels that relate to the changes caused by 
the actual implementation of those involved. From this implementation, it is possible to obtain 
audiovisual materials for study, as well as disseminate this culture of video production among those 
involved. In order to do this, one needs to investigate how the videos were used before the project’s 
intervention, to discuss the interactions during this process, and to verify its ramifications after the 
end of the project’s intervention. 
The videos participating in the First Festival of Digital Videos and Mathematics Education 
presented different themes. Some were explanatory in character, approaching the mathematical 
content from a problem situation that was solved during the development of the video. Others 
presented an informative theme in which the content was exposed without a practical example, or a 
theme focused on artistic manifestations. 

 
Figure 4: Video scenes “The use of geometry in the pool game”. Source: Data of the 1st Festival of digital 

videos and mathematical education. 
The video “The use of geometry in the pool game” was produced by students of Basic Education 
with the supervision of a teacher. In the video two students simulate a game of pool where one 
player makes a move based on plane geometry concepts. Due to the curiosity of the second player, 
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the first player, using the software of geometry dynamic Geogebra, begins an explanation of the 
resulting movement.  
The topics of symmetry and some congruence rules of triangles are covered in the video from a 
situation problem motivator. The video, in this case, presents itself as digital didactic material that 
can be used as a complement to a theoretical explanation of the concept discussed in the video. 
Ball (1973) affirms that traditional teaching is characterized by the devaluation of the oral 
expression of students, in addition to other things, and believes that learning has, as one of its 
foundations, the orality that allows communication based on knowledge. In view of the scenario in 
which solitary work is highlighted, where one student assumes the position of spectator, the 
challenge is to take the idea of collaborative construction to the mathematics classroom, considering 
their different models. Students and teachers of Basic Education, undergraduates, university 
professors, and researchers relate in a way to think about and communicate mathematical ideas, 
having a festival of videos as a venue for the dissemination and exchange of the works produced. 
5. Final considerations 
The technologies developed throughout history interact with human beings in the production of 
knowledge. The media, be it oral, written, or multi-lingual, are leveraged by the Internet and shape 
the way we produce knowledge, but also the way we are constituted as humans (Borba 2012). Boll 
and Axt (2011) propose, supported by the creator of the term "digital natives" and "digital 
immigrants" (Prensky 2001), that education must be connected to a digital wisdom in these times 
when the distinction of meanings is being transformed. 
In this scenario permeated by the digital technologies leveraged by the Internet, the work of the 
teacher gains a new dimension. Students also require new skills. (Borba, Scucuglia & Gadanidis 
2014). The development of these new competencies cannot be considered an individual’s 
responsibility. A culture should be created to support and deal with creative (non-domesticated) 
uses of the Internet and digital artifacts. 
The multiple uses of video are still little studied and are underused in the area of education, in 
particular in mathematics education, although there are already initiatives underway in this area. 
Just as the availability of paper conditioned the production of knowledge in the eighteenth century 
(Borba & Villarreal 2005), it is reasonable to speculate that new technological possibilities have 
conditioned the production of knowledge in recent years in a way that has not yet been fully 
realized. What seems solid--the plasticity of digital media, "inexhaustible" databases, and the 
mobility of information--has allowed students and teachers to express themselves in a multi-modal 
fashion, often freely and spontaneously. 
Such relationships, therefore, are already part of the daily lives of a considerable number of students 
outside the classroom.  One notices they immerse themselves in social networks on personal or 
general topics through multimodal texts, combining images, texts, and sounds, or even videos of 
their own or of those copied from some database of the Internet, but reproduced with certain 
intentionality. In this project, this means multimodal expression that is reflected in "digital video." 
Thus, digital video can express certain mathematical ideas through orality, writing, gestures, body 
expressions and sounds. It is also possible to think of multimodality as a channel for multiple forms 
of expression, media, medium, and artifacts, which are used for specific contextualization, 
communication, formalization, or mathematical investigation. 
With the development of the research project " Digital Videos in Distance Learning Mathematics," 
we intervene in the virtual environment with the creation of the locus for sharing videos. Our First 
Festival of Digital Videos and Mathematics Education was the first step and has already brought us 
118 videos that present mathematical ideas from multimodal presentations that involve usual text, 
usual filming, animations, mathematical software, among others. Videos are available for math 
teachers and students who want to use them for study, research, or in class. Some of the videos 
produced during the development of this project are being used in a pre-service teacher course 
taught by a researcher from the GPIMEM research group as a form of exchange. 
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These interactions will enable an analysis of how the student understands certain concepts and how 
he or she adapts such mathematical knowledge into his or her life. We affirm this based on the 
observation that many videos produced for the Festival presented a mathematical idea by means of 
simulating a real situation. This fact, in our view, highlights the importance the student attributes to 
content, based on meaning and how it establishes conditions for learning. 
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READING GEOMETRICALLY: CHANGING EXPECTATIONS 
ACROSS K-12 FOR READING DIAGRAMS IN TEXTBOOKS 

LESLIE DIETIKER, MEGHAN RILING and AARON BRAKONIECKI 
Abstract 
Students of all ages are asked to interpret diagrams when learning about geometry. Building on our 
prior work, we examine the ways in which expectations for interpreting these diagrams change by 
comparing tasks taken from U.S. textbooks written for first grade to tasks written for high school 
geometry courses. Using a framework that describes five dimensions of reading geometrically, we 
present the analysis of multiple textbook tasks with geometric diagrams. We hope that with this 
elaboration, we will enable other researchers to analyze the geometric diagrams of textbooks to 
advance what we know about the changing expectations of diagrammatic interpretation and to 
support educators by designing opportunities for students to develop strategies for reading 
geometric diagrams. 
 
In this paper, we extend what we have learned from our study of the expectations of textbooks with 
respect to how students read geometric diagrams. In Dietiker and Brakoniecki (2014), we were 
inspired by Pimm (2006) to consider the question, what does a diagram ask of its reader? We 
proposed dimensions of reading geometric diagrams gleaned from analyzing the geometric tasks in 
multiple elementary and secondary textbooks, including traditional and reform curricula from 
multiple countries. These dimensions represent distinct aspects of geometric diagrams that students 
are expected to notice and interpret as they negotiate the meanings of mathematical tasks. Our 
primary concern is that the ways in which students are expected to interpret geometric diagrams 
appears to change; the geometric diagrams in tasks in elementary textbooks expect students to make 
different assumptions about the information in the diagram than those in high school textbooks.  
Since then, we have continued our analysis of U.S. textbooks to learn how the expectation of 
diagrammatic reading changes as students progress through school. In particular, we compared the 
geometric diagrams found in two Grade 1 textbooks with the diagrams of two high school geometry 
textbooks. We developed six codes to describe the geometric reading of diagrams, identifying: 
(1)  how the reader is expected to interpret the diagram as something (e.g., a real life object or a 
representation of a set of objects), (2) whether deductive reasoning with the diagram is required to 
solve the task, (3) if the reader needs to mentally redraw the diagram to answer the task, (4) whether 
the reader needs to interpret conventional markings to complete the task, and (5) if the reader is 
required to read the diagram at all to answer the task. We used this framework to code both the 
words and diagrams found in textbook tasks. We then compared how the expectations of reading 
geometrically differ for younger and older students. Note that this framework only describes a 
reader’s interpretation of a geometric diagram within a textbook and does not represent the 
intention of the textbook’s author. 
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As reported in Dietiker et al. (2017), we found statistically significant differences between the 
expectations for reading geometric diagrams found in first grade textbooks compared to those found 
in the first chapter of high school geometry textbooks. In most cases, elementary readers are 
expected to interpret geometric diagrams as drawn with metrical assumptions (e.g., assuming that 
diagrams are drawn to scale), while the most common expectation of high school readers at the start 
of a geometry course is to interpret the geometric diagram as representing an object that may differ 
from the diagram (e.g., a shape whose angle measures may not match how they appear in the 
diagram). In addition, at the start of high school geometry, students are expected to be able to 
mentally redraw a geometric object represented in a diagram and interpret conventional markings 
within–expectations that we did not find in first grade textbooks.  
In this paper, to further contextualize the differences reported in Dietiker et al. (2017), we present a 
comparative analysis of textbook examples to demonstrate and clarify this coding scheme for 
recognizing the dimensions of reading geometrically.  
Comparing Geometric Diagrams for Reading Expectations across Grade Level  
The elementary and high school tasks in Figure 1 differ notably in the ways that readers are 
expected to interpret the diagrams. First, the elementary task uses diagrams where the reader is 
expected to interpret the diagram as drawn, whereas the high school task uses a diagram where the 
object in the center of the diagram cannot be interpreted as an accurate representation of the 
mystery object, requiring the reader to ignore how it is drawn. Additionally, the diagram in the 
elementary task is necessary to the task, since without the diagram, the task is impossible to solve. 
In contrast, the diagram in the high school task is supplementary to the task, since all information 
needed to complete the task is included in the problem statement. Lastly, we note that the 
elementary task does not require the reader to mentally draw a new figure (i.e., redraw one that is 
not congruent to the given objects in the diagram) while the diagram in the high school task requires 
a reader to mentally redraw the potential solid in order to solve the task. 

 
 

(a) (b) 

Figure 1 - Problems adapted from (a) an elementary textbook (Trailblazers 2008, p. 385) and  
(b) a high school textbook (CME 2009, p. 17) 

Often, the same geometric figures will be present in both elementary and secondary textbooks, but 
their contexts mean that students are expected to interact with them very differently. For example, 
although both the elementary and high school tasks in Figure 2 contain squares that exist in relation 
to other shapes, the tasks require students to interpret the diagrams as representing different types of 
geometric figures. In the elementary task, the squares do not need to be interpreted as geometric 
objects. In the high school task, students need to recognize that the diagram represents many 
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geometric figures at once, in which certain properties, such as right angles, are held constant, while 
the sizes of a and b change. Students must interpret as a representation of multiple objects, 
especially since the length marked a is noticeably different in both high school diagrams. High 
school students need to use deduction to determine unmarked side lengths, and then areas, in order 
to complete the task. Lastly, as in all elementary tasks that we found, the students do not have any 
conventional markings to interpret. The high school students, on the other hand, must interpret the 
side lengths correctly. 

 

 

(a) (b) 

Figure 2. Problems adapted from (a) an elementary textbook (Everyday Mathematics, 2007, p. 285) and (b) a 
high school textbook (CME 2009, p. 15) 

Figure 3 offers yet another contrast that reveals further differences for how a reader is expected to 
interpret a diagram. The elementary task provides diagrams of a cereal box and a can of juice. 
However, rather than see these diagrams as the real-world objects, students are expected to interpret 
these as geometric objects (namely, rectangular prism and cylinder, respectively). The students are 
required to read the diagrams (i.e., they are necessary to complete the task) and they are expected to 
interpret the diagrams as they are drawn; that is, no mental reworking of the diagrams is necessary.  

  

(a) (b) 

Figure 3. Problems adapted from (a) an elementary textbook (Everyday Mathematics 2007, p. 651) and (b) a 
high school textbook (Prentice Hall Geometry 2004, p. 57). 

Similarly, the task from the high school textbook in Figure 3 expects students to interpret a 
geometric diagram as a representation of a real-world phenomenon (i.e., farm with a barn and 
corral). Yet this diagram is expected to be read differently. Rather than being interpreted as the 
geometric object of focus, which is how the juice can or cereal box can be interpreted, the high 
school diagram instead represents one of many potential representations of the corral. For example, 
students are expected to accept that the dimensions of the corral will vary and can even contradict 
the image in the diagram (e.g., when b > h). In that way, we say that the high school diagram 
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expects students to be able to “see” the diagram as one of many, by mentally redrawing it to 
correspond to the variety of possible dimensions. In addition, since the problem statement of the 
task contains all the necessary information, the high school geometric diagram is supplementary. 
Discussion 

As shown in this paper, reading geometrically involves connecting objects with real-world contexts, 
recognizing if the diagram is to be taken as drawn or as an abstract representation of a single or 
multiple objects, interpreting with deduction, mentally redrawing, and interpreting conventional 
markings. In addition, we showed how some tasks that include diagrams can be completed without 
consulting the diagram at all. Future research is needed to determine whether the change in 
expectations is abrupt or gradual. Moreover, these differences raise the question of how 
mathematics educators can help students understand how to read diagrams and navigate the 
transitions between the different expected ways of reading. We hope that if educators make these 
expectations explicit and offer opportunities to develop reading strategies, students may gain 
fluency in reading and interpreting mathematical diagrams, which may further enhance their 
mathematical understanding. 
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ANALYSIS OF BRAZILIAN TEXTBOOKS 
LUISA RODRÍGUEZ DOERING, CYDARA CAVEDON RIPOLL and ANDRÉIA 
DALCIN 
Abstract 
In this text we present a synthesis of the "Analysis of Brazilian textbooks" workshop offered to 
primary education as well as undergraduate teachers that was idealized by the three authors and 
presented by the first two at the II International Conference on Mathematics Textbook Research and 
Development. 
Key words: Textbook analysis. Brazilian Textbooks. 
Introduction 
The analysis of Brazilian primary education textbooks constitutes a relatively recent practice in 
Brazil. Although the policies that regulate the choice and offer of textbooks for public school 
students goes back to 1929, it was only in 1996 that the Programa Nacional do Livro Didático 
(PNLD)1 started, assessing the submitted textbooks, and collecting the approved ones in an official 
Guide. Nowadays, with the implementation of the PNLD, each public school, oriented by its 
teachers, indicates three collections of textbooks among the approved ones. The government then 
sends to each school, for free, one of the three indicated collections to be used along the following 
three years. As a consequence, it became part of the reality of the public school teachers in Brazil to 
have available in their classrooms a mathematics textbook that may not have been the one that she 
or he previously suggested. Moreover, very often, this is the only material resource available to the 
students. This shows how important it is nowadays for Brazilian teachers to develop the ability to 
analyse textbooks and to criticize them, as well as the ability to adapt the activities or the textbooks 
texts, creating alternative ones. The same ability applies to educational resources available on free 
websites. 
This was the context in which the authors idealized this workshop. It had three goals: i) to discuss 
the list of items to be analysed in textbooks that exists in the official PNLD Guide and improve it 
with other items suggested by the audience with emphasis on the content, the language and the 
images used in the textbook under analysis; ii) to practice critical analysis of textbooks, working on 
excerpts previously chosen by the authors; iii) to stress the importance of a continuous critical 
textbook analysis, even with PNLD approved textbooks. 
There were nine participants in the workshop, with quite different interests as well as viewpoints, 
which enriched the workshop proposal and contributed to its success: two Elementary School 
teachers who also work for Publishers, three graduate students, three undergraduate students, and 

                                                                            
1 The Programa Nacional do Livro Didático (PNLD) is Brazil’s textbook assessment program, which 
includes mathematics, and selects the textbooks that are distributed for free by the Brazilian Ministry of 
Education.  
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finally an University teacher who is responsible for an undergraduate course which has the same 
goal of this workshop. 
The workshop was structured on four moments. In the first 20 minutes, the question What to 
analyse in a textbook? was offered to the audience. Then some slides were presented with the 
criteria put forth by the Brazilian government in the PNLD Guide. For example, books that present 
conceptual errors or sentences that induce to errors or that suggest prejudice or discrimination of 
any kind are nowadays not accepted in the official Guide. During the discussion about the criteria 
defined in the PNLD, one participant called the attention to the lack of a specific item that evaluates 
the existence of activities or didactic situations that could provoke students’ formulation of 
conjectures, motivated for example by the search for patterns that stimulates abstract thinking. This 
was one of the items that were added to the list of items to be analysed in textbooks. 
The second moment of the workshop lasted 40 minutes. During this time, four different one page 
excerpts of textbooks for the second segment of Elementary School2 were chosen for analysis by 
the authors. The nine participants were organized into four small groups, and each group analysed 
one excerpt for 15 minutes. 
The third moment lasted 50 minutes, and was devoted to the presentation of the analysis carried out 
by each group. Each presentation was accompanied by a discussion of all the participants about the 
content covered in each excerpt and the analysis carried out. We report below two of the four 
recorded presentations related to the excerpts in Figures 1 and 2. 
Figure 1 contains an excerpt from a 7th grade textbook. The group started calling the attention of the 
participants for the first paragraph, emphasizing that a definition for base of a triangle is not 
presented in the excerpt, and that it is not possible to deduce, simply analysing this page, whether 
the term base was previously defined or not. The group also criticized the definition of height of a 
triangle, observing that it is presented in a confusing and inappropriate way for a 7th grade student. 
“In fact, the use of the term ‘supporting line’ does not belong to the mathematical vocabulary of 7th 
grade students”, pointed out one of the members of the group. In addition, “the paragraph begins 
considering the side BC as the triangle’s base, and the definition of height does not even mention 
the term base at all”, pointed another one. Another aspect that called the attention of the group was 
that it is not made explicit that a triangle has three bases, hence three heights. Finally, it was 
considered by the group and the other participants that height was not sufficiently explored in other 
triangles, for example, in triangles that have an obtuse angle. 
In the second paragraph, considering the objective to be achieved in the third paragraph, the group 
pointed out that there is a slip of the author: the triangles not only need to have the same base and 
the same height, but they must also be congruent, something which is not emphasized neither in the 
text nor in the image. This was considered by the audience an error that may induce the 
misconception that two triangles of the same base and the same height are always congruent. The 
audience concluded that this situation would justify an exclusion of this textbook by the PNLD, as 
required in the PNLD Guide: there is a statement, supported by an image, which leads to a 
conceptual error. 
The third paragraph presents the deduction of the formula for the area of a triangle, “instead of 
suggesting exploratory activities that allow the creation of strategies by the students (involving 
cut-outs of figures, for example)” remarked one of the members. The group considered this 
approach inadequate, since it does not stimulate the development of mathematical thinking and 
problem solving. 
 

                                                                            
2 The second segment of elementary school is from the 6th to the 9th grade. 
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Figure 1: on the left, an excerpt from Bianchini (2014), and its translation on the right 
Another group presented the analysis of a 5th grade textbook excerpt (Figure 2), claiming that it has 
many problems. One of them is that the excerpt consists of an activity “that suggests several 
different interpretations, which even hinder its solving. For example, the word ‘biggest’ in the 
sentence ‘She decided on the biggest one’ is mathematically ambiguous” remarked one of the group 
members. The group also called the attention of the audience to item (b): the command “Choose 
one of Carla’s drawings…” is followed by the sentence “The car is the easiest ...”, suggesting that 
there is actually no choice for the student; also the final commands of this item may confuse a 5th 
grade student, especially the sentence “... it is good to go on counting the squares that form each 
side of the figure in order that the copy turns out well made”. The group pointed out that this 
statement may elicit misunderstandings between area and perimeter: how does a square 
(two-dimensional) form a side (one-dimensional)? The audience agreed with the group that, after 
all, this activity aims to conceptualize perimeter, which becomes clear in item (c) but in the 
beginning it is suggested to the reader the counting of squares, which indicates an aim to introduce 
area. It was also stressed by the group that the question in item (c) (“Do you know what a perimeter 
is?”) deserves attention from the teacher, since it is very likely that the students’ answer will be 
“no”, once the term perimeter is not self-explanatory. 
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Figure 2: On the left, an excerpt from Isolani (2005), and its translation on the right. 

The excerpt also presents images which the group considered problematic: regarding the image of 
the tree, it was pointed out that this image does not help in the understanding of the ongoing 
process. Moreover, the indication of the counting in the illustration is chaotic: there is a “2 1” that 
the student needs to interpret as “2 and 1”, and not as twenty one, remarked one of the members. 
“Also, if the student tries to use as a hint the saying of the snail (“Thus it is easy to calculate the 
perimeter of the figure”), she or he will not be able to calculate the perimeter of the star or the boat, 
since parts of those figures are formed only by portions of squares. In addition, and this was 
considered a serious mistake by the group and the audience, students are induced to choose the car, 
whose perimeter is not easy to be determined, “because it is not a simply connected picture”, 
remarked one of the participants; hence, in order to calculate the perimeter of the car, it would be 
necessary to discuss with 5th grade students whether the windows are part of the perimeter of the 
car, or not. All the participants agreed that all the chosen drawings were inadequate to introduce the 
concept of perimeter with 5th grade students. 
The group ended its presentation saying that the idea behind the sentence “For the copy to be well 
made” may discourage students to try any other strategy of their own. The opportunity to stimulate 
students to outline their own strategies is once more lost. 
In the fourth and final moments of the workshop, a reflection was carried out concerning the 
process of textbook analysis. The participants concluded that both excerpts needed reformulation. 
Two aspects were then stressed by the authors: i) it is imperative that the teacher examines critically 
the textbook adopted for the classroom; ii) critical analysis is a practice that needs to be developed. 
The objectives set for the workshop were attained, in the opinion of the authors. The most important 
conclusion of the participants was about the need for specific activities involving the analysis of 
textbooks (or even specific courses with this aim), which should be part of the curricula of 
pre-service undergraduate teachers’ education. This would allow future teachers to go through the 
process of textbook analysis, enabling them to develop a critical and flexible look on the materials 
offered by institutions, publishers and Internet. 
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MATHEMATICAL LESSONS IN A NEWSPAPER OF PORTO 
(PORTUGAL) IN 1853: A SINGULAR EPISODE IN TEACHER 

TRAINING 
HÉLDER PINTO  
 “Não se deve exigir da infancia mais do que ella é capaz, também se não deve exigir menos: é 
perigoso resumir tanto que deixem de saber o que devem aprender; é enganal-os, é fazer que mais 
tarde lhes custe muito; sem esforços não ha saber.”  
[One should not demand more from childhood than they are capable of, nor demand less: it is 
dangerous to summarize so much that they do not know what they should learn; it is deceiving 
them, and making it harder later; without effort there is no knowledge] 
António Luís Soares (Soares 1853, p. 245) 
 
Abstract 
In this workshop in ICMT-2017 we presented and analyzed the lectures published in 1853 by 
António Luís Soares in detail. Since it is impossible to do so in these pages, we just highlight some 
parts dedicated to the metric system and its comparison with the ancient Portuguese units. 
 
The Industrial Association of Porto was founded in 1849 in the city of Porto (Portugal). This 
association was formed by the high society of the city (608 members in 1853): 192 
artisans/artifices, 36 manufacturers, 174 traders, 48 goldsmiths, 32 landowners, 30 medical doctors 
and chemists, 84 public servants, 5 farmers, and 7 militaries (Soares 1853, p. 307). The industrial 
education was one of its first priorities, having created the Industrial School of Porto in 1852, with 
the following graduations: factory director, overseer of public works, overseer of machines (steam 
engines), overseer of mines, telegrapher, master of public works and master of chemistry. There 
was also a factory worker graduation that was preparatory for all the others courses. In 1853, 
António Luís Soares, professor of this school, published several arithmetic lessons for primary 
education in the newspaper of the association, a biweekly newspaper whose first issue came out on 
1852 – Da exposição dos elementos da arithmetica na aula de instrucção primaria da Associação 
[Lecture of the arithmetic elements in the Association’s primary school grade].  
António Luís Soares (Porto, 1805 – 1875) was a professor of the Polytechnic Academy of Porto 
since 1836 (First lecture topics: Arithmetic, Elementary Geometry, Trigonometry and Elementary 
Algebra) and a professor of The Industrial School of Porto since 1852 (Arithmetic, Algebra and 
Geometry) (Pinto 2013, pp.139-140). There is a lack of information about this professor and, except 
for the text that we present here, there is only a reference (Carvalho 2017, pp. 9-10) to another text 
(Exposição dos elementos de Aritmética para uso dos estudantes do Colégio de Santa Bárbara na 
cidade de Pelotas, Pelotas, Brazil, 1849), an arithmetic book published in Brazil. No copy of this 
text was found (Scipião says that António Soares was in Brazil between 1847 and 1851, but no 
justifications for his stay are pointed out). The Polytechnic Academy of Porto (created in 1837, 
replacing The Royal Academy of Navy and Trade Affairs of the City of Porto from 1803) and the 
Industrial School of Porto (1852) were connected in various ways like, for instance, many 
professors taught simultaneously in both schools and both shared the same building until 1933 
(about 80 years). There were also proposals to fusion both in one single institution. However, there 
was a major reform of the Polytechnic Academy of Porto in 1885 (in 1884 the Academy received 
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the most important Portuguese mathematician at that time: Gomes Teixeira) and, at that point, the 
difference between the two institutions was definitely settled: one more theoretical (university level 
studies) and the other more technical (intermediate studies). One of the most important 
characteristics that both schools shared was the fact that both were created to attend effective 
necessities of the city (sailors, trade men, engineers, industrial and commercial workers,…) and 
both were funded by the initiative of private institutions of the city (Alves 2006, Serra 1989, and 
Pinto 2013, pp. 107-179). 
Even before the creation of the Industrial School, although primary education was not the main 
focus of the Industrial Association, a course of «reading and writing» opened, which was attended 
by 117 students (many of them were destined to the Industrial School). This group included 25 
individuals who attended these lectures in order to propagate this knowledge for several villages 
around the city of Porto. António Luís Soares was intended (Soares 1853, pp. 243-244) to address 
to these 25 “future teachers” in order to present some works on teaching of arithmetic. Just a few 
could “attend the invitation” (why?) and so the alternative was to publish such works in the 
newspaper of Industrial Association of Porto (figure 1). 

 
Figure 1. Header of the newspaper of the Industrial Association of Porto (number 16, April 1, 1853). 

The author makes, in the first issue, several considerations about the importance of propagating the 
basic math instruction, either for industry either to the trade workers, two important activities for 
the city at the time. In the following table, the structure of these lessons is presented (table 1). 

Date Number (pp.) Sections Lessons 

April, 1 
16 

(pp. 244-248) 
Section 1: 
Formation 

of the 
numbers 

Introductory observations 
1. numeration system 
2. spoken numbering 

May, 1 
18 

(pp. 277-281) 
3. written numbering 

4. observations about quantities 

June, 1 
20 

(pp. 307-312) 

5. metric system (units, multiples and 
submultiples) 

6. metric system (written abbreviations) 

July, 1 
22 

(pp. 339-345) 
7. the “big” numbers; roman numerals 

Section 2: 
The first 

arithmetic 
operations 

1. addition 

July, 31 
24 

(pp. 374-383) 

1. addition (cont.) 
2. multiplication 

Tables of units conversions 
August, 1 

1 (T2) 
(pp. 2-3) 

December, 
1 

9 (T2) 
(pp. 138-141) 

How to convert the ancient Portuguese units to the metric 
system and vice versa 

Table 1. Structure of the lectures. 
In the fourth lesson, the author made several observations about quantities. He observes that the 
numbers (“a number is a set of things with the same name”) learned are good to count, for instance, 
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men and trees. And what about a big quantity of grains of wheat? It was impossible and inutile to 
count each single grain… There are things that we cannot measure the quantity only using numbers. 
So, it’s necessary to have another type of measurement units for dry volumes (grains and beans for 
instance), surfaces (lands and fields), liquid volumes (milk, wine), weights (reference to the scale of 
two arms), time and money (coins). At this point, the author does only a first introduction to this 
subject and a reinforcement of the need of other measurement units for the everyday 
live/industry/commerce. 
The metric system is formally presented in lesson number 5 (units, multiples and submultiples). The 
author explains that, historically, the first measurement units were, naturally, the Palmo (hand) and 
the Pé (foot), but this kind of units, over time, had proven to be difficult to work  with and a source 
of problems and errors. Afterwards, he made reference to France and to the difficulties in the 
implementation of the metric system. But he thinks that the context in Portugal in 1853 was 
different: 

 “However, there was hope that this time was possible to introduce the metric system in the 
plenitude. The artisans didn’t fight against this system anymore, because they are acquainted 
with the new units by the visits of the academic/theoretic people to their shops.”  
Jornal da Associação Industrial Portuense, 20, June 1, 1853, pp. 307-308 

 [translated by the author of this paper] 
 
The next step, in his opinion, was to propagate this system for the common retail trade, because it 
would facilitate the commercial transactions in everyday life. Then he presented some common old 
Portuguese units in a way to highlight two major problems: first of all, it’s difficult to memorize all 
the relations between them. For example, he presented the following length units: 1 braça = 2 vara; 
1 vara = 5 palmo; 1 palmo = 3 pollegada, and weight units: 1 quintal = 4 arroba; 1 arroba = 32 
arratel; 1 arratel = 16 onça; 1 onça = 8 oitava. On the other hand, it’s very difficult to operate with 
them (for instance, what is the relation between quintal and oitava?). 
Afterwards, the author presented, finally, some metric units: the meter (linear); the are (surface; 100 
square meters; note that the square meter is too small to measure fields…); the liter (capacity) and 
the gram (weight). Then, the multiples of these units were presented («Deca» means 10 primitive 
units, «Hecto» means 100 primitive units and «Kilo» means 1000 primitive units) and submultiples 
(«Deci» means 1/10 primitive units, «Centi» means 1/100 primitive units and «Milli» means 1/1000 
primitive units). The author does now an important warning: for surfaces (1 m2 = 100 deci-m2) and 
capacities (1 m3 = 1000 deci-m3); we must be very careful when working with multiples and 
submultiples. 
The lesson number 6 was the continuation of the presentation of the metric system. He teaches the 
written abbreviations and presents various tables comparing the old Portuguese units with the 
“new” metric system (units for big lengths, small lengths, agricultural, small surface, liquid 
volumes, dry volumes, solid volumes (like wood), weights and small weights). 
Afterwards, when he teaches addition, he returned to emphasize that the metric system is preferable 
to the old Portuguese units. At this point, he noted that adding numbers with decimal parts is 
essentially the same as adding integers and presented several examples. It’s only needed to put the 
decimal points vertically aligned and the method is exactly the same (add 1,23 meters to 6,94 
meters is not harder than add 123 to 694). In fact, this is an important advantage from the metric 
system: it’s easier to work (in this case, add) with the sub-units of the metric system than with the 
old Portuguese subunits. And to emphasize this point of view, he presented a very difficult example 
(table 2) using linear units (note that: 1 p(olegada) = 12 l(inha); 1 P(almo) = 8 p; 1 B(raça) = 10 P). 
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5 l. + 11 l. = 16 l. = 1 p. + 4 l. 
7 p. + 2 p. + 1 p. = 10 p. = 1 P. + 2 p. 
3 P. + 8 P. + 1 P. =12 P. = 1 B. + 2 P. 
30 B. + 12 B. + 1 B. = 43 B (there is a 

typo). 
Table 2. Fourth example from the Lesson 1 (“The first arithmetic operations”). 

For students’ homework, the author suggests more examples with old Portuguese units, even more 
complicated, to convince everyone that it was a mess to work with the old units and it was 
necessary and easier to adopt the «new» metric system. 
In conclusion, the lectures presented here are intimately connected with the socio-economic context 
of the city of Porto: an industrial and commercial city and the second city in population number of 
the country (Pinto 2013, p. 20). On the other hand, these lectures were sponsored by an Industrial 
Association, which explains the fact that they were lectures with a very practical goal (teach the 
basic arithmetic always with the aim of using it in the industrial/commercial trade). Note also that 
the metric system was implemented officially in Portugal in 1852 (the first attempt was in 1814 but 
with no success), so it was a very important and new subject when these lectures were published. 
All these factors explain the (excessive?) focus on the metric system and its relation with the old 
Portuguese units. It should also be highlighted that it is quite peculiar that these lectures have been 
published in a newspaper and not, for example, in a textbook to be acquired only by students, which 
seems to be indicative of the intention to propagate this basic knowledge of mathematics by several 
target audiences (not only for children but also to adults).  
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DEVELOPING OPEN-SOURCE CURRICULUM IN BRAZIL: THE 
LIVRO ABERTO DE MATHEMATICA PROJECT 

MERIL RASMUSSEN and FABIO SIMAS 

Introduction 
The Livro Aberto de Mathematica project is a Brazilian initiative to create a low-cost, digital 
mathematics textbook series for high schools through a process designed to empower practicing 
teachers both by providing them with high-quality didactic materials and by allowing them a voice 
in their creation and ongoing revision. 
In early 2016, a volunteer-based team of mathematics teachers and teacher-educators created a pilot 
textbook, Frações no Ensino Fundamental I (Bortolossi et al. 2016), which serves as the 
prototypical production model for current efforts.  

In addition to a concurrent workshop on the Fractions book offered in Portuguese for Brazilian high 
school teachers and an overview of the Livro Aberto project presented as part of the conference’s 
oral communications, we held a workshop in English entitled: "Adapting Sociocultural Research 
Frameworks for Brazil," which targeted international participants. Our plan was to offer up the 
ongoing Livro Aberto project as a case study through which to discuss our challenge of how to 
create a meaningful, ongoing feedback loop between practicing teachers and our 
mostly-university-based author teams. In particular, we were interested in recent sociocultural and 
developmental research involving teacher empowerment (Even & Olsher 2012; Gravemeijer & van 
Eerde 2009; Ruthven 2012). 
We also hoped to share and discuss the mechanics of our open-source style of collaboration. To this 
end, we set out guidelines for an open-source-inspired strategy of how to manage the divergent 
opinions that might arise within the group discussions. Thus, rather than just talking about how we 
had chosen to organize our project, we hoped to offer workshop participants a participatory 
experience of open-source decision-making. 

As it played out during the workshop, discussion focused on this open-source aspect of our project 
and little attention was given to developing our research plan. Thus, in the act, the focus of the 
workshop shifted from how best to conduct developmental research to how best to accommodate 
difference and dissent within a collaborative initiative. 

The Open-Source Approach 
The history of the open-source software movement is tied to the collaborative development of the 
Linux operating system initiated by Linus Torvalds beginning in 1991. The open-source system of 
collaboration was further refined by Torvalds in 2005 as the Git version control system (Hamano & 
Torvalds 2005). Git goes beyond the open sharing of source-code to address the dynamics and 
mechanics of collaboration and it is this that the Livro Aberto project has adapted to create our own 
collaboration platform.  
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Git relies on a system of forks and pull requests designed to maximize collaborators’ independence 
while ensuring accountability. Git maintains clear, local hierarchal control while offering the 
possibility of free, non-hierarchical splintering designed to promotes diversity and innovation.  

A diagram of the evolution of the Linux operating system (Singh 2013) makes evident its obvious 
parallel with biological evolution. 

 
image source: fair use of (Singh 2013) http://techpp.com/2013/02/20/evolution-of-linux/ 

In the open-source process, differences result in forks, while cooperation remains entirely voluntary 
and optional. If an author wants to contribute back to the collective project, they request a pull to 
the custodian of the master line who examines the suggested changes and decides whether to accept 
them back in. 

 
image source: by Locke Cole at English Wikipedia via Wikimedia Creative Commons 

This open-source approach to collaboration stands in stark contrast to the consensus-based approach 
favoured by Wikipedia. 
On a spectrum of decision-making strategies, open-source extends out beyond a democratic 
approach which ultimately prioritizes unified action. In an open-source system, participants who 
disagree with decisions taken are always free to forge their own way separately. In fact, the 
open-source approach most closely resembles free-flowing social interaction. In conversation, 
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people typically agree and/or disagree and ultimately move forwards either together or apart. Any 
formal insistence on reaching an agreement can feel oppressive. On the other hand, agreeing to 
disagree, while liberating, can tend to circumvent cooperation. What the open-source approach 
ultimately facilitates is a flexible hierarchy, one that may tend towards a meritocracy, but that at 
least flows with people’s individual inclinations, a peaceful coalition of the willing. 

The Workshop 
The workshop was attended by a dozen participants. We began by sharing the story of the Livro 
Aberto project and describing the kinds of choices we were making and the collaborative strategies 
employed. We also explained the open-source-inspired workshop format: respect and listening were 
required but agreement was not, and divergent sub-groups were welcome to break away and lead 
separate conversations at any point.  
Early on, in the conversation this strategy came to a head, as two participants voiced their 
skepticism in regards to the viability of our open-source approach. After several minutes of intense 
discussion, and with no easy resolution in sight, we invited them to lead a breakaway faction in 
order to pursue their preferred strategy and leave us to pursue ours. It was a poignant moment, on 
the edge of social awkwardness. In such a small group, meeting together for a short duration, it was 
perhaps unrealistic to expect that a subgroup would actually form. However, even entertaining the 
possibility of amicably splitting the group carried with it a liberating effect by dignifying each 
individual's autonomy. 
As it happened, there was also an experienced open-source programmer in the group who was able 
to offer a third-party opinion attesting to the functionality of the open-source approach, and we 
proceeded cognizant of an emerging social dynamic within the group that allowed space for 
skeptics, who were free to lurk and listen, disagree, and depart when they wished, as well as for 
participants with common ideas to share and develop together. 

Overall, the workshop discussion focused on the open-source strategy and how it can be adapted to 
curriculum development and on the details of the Livro Aberto project. The discussions elaborated 
on the particular situation in Brazil (Watts 2016), the regulatory framework of the National Program 
for Educational Textbooks (PNLD), and the history of the MatDigital project (Giraldo, Rangel, 
Ripoll & Mattos 2014). 
We tentatively explored the question of how to best bridge Brazil’s digital divide -- how to improve 
mathematics education for students with limited access to computers and connectivity -- and how to 
conduct meaningful research in Brazil's low-resource context. However, the answers to these 
questions seemed beyond the purview of researchers working elsewhere. 
Conclusion 
In planning the workshop, we had hoped to elicit a master-class in how to translate developmental 
research methods to our low-resource context. In the end, discussions revolved around the potential 
of the open-source approach already embedded in our process. As experienced in both the 
workshop and the larger project, an open-source approach foregrounds power dynamics within a 
group. Not only does it highlight differences, it also makes evident existing and evolving 
hierarchies. As a strategy designed to mobilize participants, it offers an interesting compliment to 
sociocultural and developmental research approaches (Even & Olsher 2012; Gravemeijer & van 
Eerde 2009; Ruthven 2012) which also tend to lead researchers to examine their own roles as actors 
within educational systems, each with their own relationship to power and authority, and how these 
inform research strategies and perspectives.  
Our experimental workshop format led to a rich participatory discussion. It also offered participants 
who had minimal familiarity with open-source collaboration an experience of this style of 
interaction.  
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For Livro Aberto, the workshop served to reconfirm that the issues we struggle with in Brazil do not 
have easy answers. Little progress was made during the workshop towards devising a 
research-based feedback loop to support further development of our newly-created materials. 
However, networking at the conference served to help us to connect with existing materials in 
Portuguese on the Japanese Lesson Study Approach, which may hold a potential key to our needed 
feedback mechanism. (Conferences, by their nature, facilitate open-source sharing.) 
As we push ahead with our project in the face of a turbulent economic and political environment in 
Brazil, our open-source approach is also intended to make a space for others to contribute and to 
help us carry forward the work of devising better mathematics textbooks as they can. 
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AN APPROACH TO THE HYPERBOLE CONCEPT BASED ON 
THE ANALYSIS OF HIGH SCHOOL TEXTBOOKS  

NORA OLINDA CABRERA ZÚÑIGA, MARIANA LIMA VILELA AND NAYARA 
KATHERINE DUARTE PINTO 
 
The proposal of this workshop for teachers was an unfolding of an experience realized with the 
third year of high school classes in the Technical College of the Federal University of Minas Gerais 
(Coltec-UFMG), in the year 2015. One of the authors, who is a Mathematics teacher in this 
institution, together with three trainees from the undergraduate programme in mathematics at the 
UFMG, currently teachers, have planned and developed a dialogued expository class to introduce 
and explore the concept of hyperbole in the classroom. 
For this class, one of the aspects initially considered was the analysis of the proposed content in the 
textbook adopted by Coltec. This analysis led us to perceive the need to adapt and complement this 
content, aiming to introduce the concept of hyperbole comprehensively to high school students. We 
emphasised that the textbook was a support for teachers to prepare and perform the teaching, and a 
reference for the students. 
Considering the positive returns we had from the students and teachers who experienced the report 
of Pinto et al. (2016), we developed this workshop at the II International Conference on 
Mathematics Textbook Research and Development (ICMT-2). The workshop sought to familiarise 
high school teachers with an approach that prioritised the comprehension of the concept of 
hyperbole, little explored in textbooks of this level of education. 

First, we dialogued with the participating teachers about the learning of conic sections during high 
school and graduation, and about teaching in the secondary school. The participants remembered 
that the content of hyperbole was taught them predominantly by direct application of formulas and 
some sketches, but there was no memory of any approach that explored the concept of hyperbole in 
itself. 

After this dialogue, we described and analysed approaches of the concept of hyperbole proposed in 
different textbooks, in an attempt to indicate the possibilities suggested in the student's book and in 
the methodological guidelines in the teacher's manual. Next, we had an activity to introduce the 
concept of hyperbole using manipulative material, taking as reference the work of Pinto et al. 
(2016, pp. 6-8). Finally, we held a plenary discussion. 

The participation of teachers throughout this workshop in the ICMT-2 and the evaluation of it by 
the teachers indicated that this activity gave them an experience in which the concept of hyperbole 
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was carefully developed using manipulative material. In this sense, we present below three of the 
statements that were part of the final evaluation by the teachers. 

Participant A: “I loved the workshop. It was very didactic, with good ideas for classroom and 
reflections on textbooks. I am going to do the string activity with my students.” 

Participant B: “The workshop was excellent; it highlights the importance of concrete material in 
building concepts, helping the educational process together with the concept from the textbook.” 

Participant C: “The workshop is very good to apply in hyperbole teaching because it allows the 
student to see how the hyperbole and its concept are built. It is the manipulation of the material 
what facilitates students to understand the concept of hyperbole.” 

We hope this workshop had motivated the teachers to think about their pedagogical practices and 
the importance to analyse the textbooks used in the educational institution, moreover to inspire 
them to adapt approaches of mathematical concepts proposed in the educational materials. 
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TEACHING PROBABILITY IN EARLY SCHOOL YEARS: THE 
APPROACH IN BRAZILIAN TEXTBOOKS 

MICHAELLE SANTANA and RUTE BORBA 

Introduction 
Teaching probability concepts in school is highly essential for today´s citizen that has to constantly 
deal with certainties and uncertainties. Therefore, it is critical for teachers to promote the 
development of a wide range of probability concepts through experiences, enabling students to 
observe and then draw conclusions, awakening scientific thinking critical to their education. In this 
sense, textbooks are very important because they can direct teachers to contents to be taught in each 
school level and year and show how to broaden the understanding of each concept, in particular 
those concerning probability. 
Literature Review 
According to Carvalho and Lima (2010), textbooks contain choices on: the contents to be studied; 
the methods to be used for students’ better understanding; and the curriculum organization to be 
adopted throughout schooling years. Care on choices, concerning probability, is, thus, necessary in 
order to address appropriate probabilistic concepts in the classroom. 
According to Novaes and Coutinho (2009), when introducing probability, it is necessary to explore 
some indispensable concepts, namely: randomness, random experiment, sample space, event and 
distinction between the different approaches in determining probability. Teachers of early years 
need to know and understand, and also to be aware of ways in which these notions can be worked 
on – not necessarily using formal terms, but in activities appropriate to children in early schooling. 
These activities may be suggested in textbooks from early years and may also be sought from other 
sources. Researchers (such as Santana 2011) point out that the various basic notions – such as 
randomness, chance, determinism, possibility, prediction, trial, sample space, event, 
equiprobability, frequency, conditionality – have not been adequately addressed by teachers, 
students and the resources available, such as textbooks. In this way, probability teaching is limited 
and, as a consequence, students' understanding in this content may be impaired. 
Aims 
The research question of the study was: How do Brazilian elementary school mathematics 
textbooks approach the concept of probability? In this sense, the specific aims were:  
a) Observe how the concept of probability is constructed in 5th grade textbooks and in the 
respective teacher manuals;     
b) Check the notions addressed (perception of chance, idea of random experience, notion of chance, 
concept of possibility, among others); and  
c) Identify what types of activities (interpretation and construction of tables, bar charts, tree 
diagrams, among others) are suggested by the authors to work with students. 
Procedures 
The present study aimed to analyse how Brazilian elementary school mathematics textbooks 
approach the concept of probability and how authors consider the dimensions pointed out by 
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Vergnaud (1986) in his Theory of Conceptual Fields: situations that bring meanings to a concept; 
properties and relationships (invariants) of the concept; and symbolic representations used to 
represent and work on the concept. With this aim, 11 5th grade textbooks of the Brazilian National 
Textbook Program were analysed. Analyses considered the way the concept of probability was 
introduced; notions dealt with; the types of activities provided and symbolic representations used. 
Analysis and Results 
It was observed that the commonly used ways to introduce probability, such as shown in Figure 1, 
are linked with the ideas of percentage, fractions or combinations. In this example is requested the 
chance, in fractions, of obtaining heads and tails when tossing a coin. 

 
Figure 1. Example of the introduction, in Collection F, of the concept of probability associated with the idea 

of chance and fractional representation 
Furthermore, it was noticed that five notions, namely chance, probability, experiment, randomness, 
prediction and trial, were largely covered, with chance the most frequent, although no textbook 
dealt with all these notions. Regarding the types of activities, word problems were the most 
frequent with 50% of them only with instructions and no type of auxiliary symbolic representation. 
Other problems, such as the one in Figure 2, used other forms of symbolism to represent the 
situation posed – in this case the tossing of dice. 

 
Figure 2. Example of activities, in Collection B, which uses a graph as a symbolic representation 

In general, the textbooks analysed do not deeply explore the concept of probability and the 
proposed teaching in the teachers’ manuals is fragmented. Thus, improvement is necessary to better 
motivate early school students in their development of probabilistic thinking.  
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THE PRESCRIBED CURRICULUM FOR COMBINATORICS AND 
WHAT IS PRESENTED IN 5TH GRADE BRAZILIAN TEXTBOOKS 
GLAUCE VILELA and RUTE BORBA  

 
Faced with all the variety of material offered to the teacher, the textbook still occupies a prominent 
place in teaching and learning processes in the school context. In the last decades in Brazil, this 
resource is becoming more and more the target of research, especially in what concerns the 
approach of specific contents from the official curricular guidelines. For Sacristán (2000), the 
official curricular guidelines, defined by him as prescribed curriculum, acts as a starting point in 
ordering the curricular system, and becomes a reference in the elaboration of didactic materials.  
In this sense, Sacristán (2000) defines textbooks as presented curriculum that translate and interpret 
the meaning and contents presented in the prescribed curriculum.  
The present study aims to analyze the guidelines given concerning combinatorics in the official 
documents for elementary mathematics education, the relations of these orientations with the 
approach to the problems involving combinatorial reasoning in 5th year textbooks and the 
guidelines presented in teachers’ manuals, taking into account varieties in the three dimensions of 
concepts proposed by Vergnaud (1986) (meanings, invariants and symbolic representations). For 
the analysis, we used as official documents the national curricular parameters - PCN (Brasil 1997), 
eight 5th grade mathematics textbooks and their respective manuals. These textbooks were chosen 
randomly and the 5th grade was chosen because previous studies (Borba, Rocha & Azevedo 2015) 
showed that, in elementary school, more combinatorial situations are presented in this school year. 
The prescribed curriculum analysed presented indications of paths to be followed for the teaching 
of combinatorics. This approach becomes explicit when the document emphasizes the need of 
activities with different meanings of multiplication, dealing explicitly with one of the combinatorial 
situations, that is the Cartesian product, and pointing out possible symbolic representations such as 
drawings and tree diagrams. The national curricular parameters (PCN) states: “Having two skirts - 
one black (B) and one white (W) and three blouses - one pink (P), one blue (B) and one grey (G) - 
in how many different ways can I dress? Analyzing this problems, it is seen that the answer to the 
question asked depends on the possible combinations. Students can obtain the answer, in a first 
moment, by making drawings and tree diagrams, until exhausting the possibilities” (Brasil 1997, 
p.69)”. 
According to the PCN: “With respect to combinatorics, the objective is to lead the student to deal 
with problem situations involving combinations, arrangements, permutations, and especially the 
multiplicative principle of counting” (Brasil 1997, p.36). However, in this prescribed curriculum we 
observed the absence of specific orientations for the teaching in the first school years with different 
combinatorics situations, their meanings, their invariants and varied forms of symbolic 
representation. 
Regarding the results obtained in textbooks, we observed that the meanings with the highest total 
percentages of presentation were combination (such as the example presented in Figure 1) and 
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Cartesian product (such as the example presented in Figure 2). There was little variation of the 
symbolic representations used in the presentation and in the request for solving the problems.  

 
Figure 1 - Example of a combination problem:                                                                                                    

“Four people meet and shake each other’s hands. What is the total of greetings?” 

 
Figure 2 - Example of a Cartesian product problem concerning the choice of a meal with the options between 

2 types of salad, 2 types of meat and 1 type of desert. 
The results show little orientation in textbooks to the approach of combinatorics in the early years 
of schooling and that the books attend, only to some extent, to what is pointed out in the prescribed 
curriculum. 
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DOCUMENTATIONAL TRAJECTORIES AS A MEANS FOR 
UNDERSTANDING TEACHERS’ ENGAGEMENT WITH 

RESOURCES: THE CASE OF FRENCH TEACHERS FACING A 
NEW CURRICULUM 

KATIANE DE MORAES ROCHA, LUC TROUCHE AND GHISLAINE GUEUDET 

Abstract 
This article contributes to the symposium coordinated by Janine Remillard, Hendrik Van 
Steenbrugge and Luc Trouche, that discusses teacher-resource use around the world. We address 
the following issue: how might we understand the processes by which teachers engage with 
curriculum resources to design instruction? We situate our work in the documentational approach to 
didactics and propose two new concepts: documentational experience and documentational 
trajectory, aiming to analyze teachers’ professional development over time through their 
interactions with resources. Our methodological choices are inspired by the reflective investigation 
leading teachers to reflect about their work. We analyze the case of two middle school teachers, 
Anna and Viviane. Our preliminary findings evidence that these teachers’ documentational 
experience developed quite differently. Anna’s documentation is strongly supported by her collective 
work outside of school, helping her to face new curricular changes. Viviane’s documentation work is 
strongly supported by her interactions with her colleagues and the use of institutional resources, 
helping her to face the same changes. 
Keywords: Documentational approach to didactics, documentational experience, documentational 
trajectory, reflective investigation, professional development. 
Introduction and context 
The central theme of our work is the engagement of teachers with curriculum resources. Our study 
is situated in France, in a context marked (at least) by three features.  
The first one is the profusion of available digital curriculum resources. Digital resources provide 
new means for designing and sharing teaching materials. In France, many such resources are 
available on the Internet. A good example is the Sésamath association (http://www.sesamath.net) 
that designs online resources, among them free mathematics e-textbooks. 
A second important feature is the introduction, in September 2016, of a new curriculum, for grades 
1 to 9 introducing deep changes: the curriculum is designed over cycles of three years instead of 
one year; new topics, mainly algorithmic and programming, are introduced within mathematics. 
The French Ministry proposed a set of resources that aim to support teachers’ implementation of 
this new curriculum: new tasks for working with students, with respect to new topics to be taught 
and to competences to be developed and some methodological advice to do it. In general, teachers 
never taught, and, most of the time, never learnt these new topics. Thus they need to learn these 
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topics and learn to teach them using new digital resources. Moreover, they should design new 
resources in this perspective.  
The third feature is a national research project, ReVEA (Living Resources for Teaching and 
Learning, 2014-2018, http://anr-revea.fr) that seeks to understand which resources are used by 
teachers and how. This project acts as an incubator of concepts (Trouche 2016) and addresses many 
research questions. In this article, we will discuss the issue how might we understand the processes 
by which teachers engage with curriculum resources to design instruction?  
This article is divided into four sections. Firstly, we present our framework to analyze teachers’ 
work with resources and we will introduce the concepts of documentational trajectory and 
experience. Secondly, we discuss our methodological choices focusing on some tools as reflective 
mapping of documentational trajectory. Thirdly, we analyze the case of two middle school teachers 
with two different profiles. And finally, we present some considerations contrasting these two case 
studies.  
Theoretical Framework 
In this section, we present our theoretical framework, combining the Documentational Approach to 
Didactics (DAD) and the Professional Didactics mobilizing particularly the concept of experience. 
We then introduce two concepts - documentational experience and trajectory – that we use for 
analyzing teachers’ professional development over time. Finally, we propose an articulation 
between individual and collective work thanks to the work of Fleck (1935).  
Our work is grounded in the Documentational Approach to Didactics (Gueudet & Trouche 2010), 
analyzing teachers’ activity and professional development through their interactions with resources, 
named their documentation work, consisting in choosing, collecting, interpreting, designing, and 
adapting their resources. This approach distinguishes two important notions: resource and 
document. The term “resource” is considered in a broad sense, as everything that teachers use to do 
their work (Adler 2000). The document is a hybrid entity, composed of resources and schemes 
developed by the teachers for reaching a given teaching goal. A scheme is defined by Vergnaud 
(2009, p. 88), as “the invariant organization of activity for a certain class of situations”. It is 
constituted by four components: goals and anticipations that guide the activity, rules that retain 
“sequences of actions, information gathering, and controls”, operational invariants that is the 
“knowledge in action”, and inferences that allow to take in account the singularities of the situation. 
The resources components of a given document are not isolated but become a part of the teacher’s 
resource system. 
In the framework of Professional Didactics, Pastré (2011) defines professional learning as a 
development in action for facing different situations over time. He proposes to analyze teachers’ 
professional development by1 “a focus on activity in the broad sense, that is, including learning; [...] 
a focus on the importance of the cognitive dimension present in the activity, particularly in the form 
of conceptualization in action” (Pastré 2011, p. 48). He mobilizes the notions of scheme and 
situation to analyze it, and for him the development of the subject is understood “as [the] 
construction of oneself, as appropriation of all the events experienced by a subject to give them 
meaning for oneself”2 (Pastré 2011, p. 118). These events will constitute the experience of the 
subject which is defined as the accumulation and appropriation of the past by itself (Pastré 2011). 
Building on these frameworks, we consider that teachers develop their experience for and from 
designing resources for teaching. It leads us to define the documentational experience of a given 
teacher as her accumulation and appropriation of her past documentation work. We hypothesize 
then that over time teachers meet some events that trigger their documentation work. We name 
                                                                            
1 « une centration sur l’activité au sens large, c’est-à-dire incluant l’apprentissage ; […] une centration sur 
l’importance de la dimension cognitive présente dans l’activité notamment sous la forme de la 
conceptualisation dans l’action ». 
2 « comme [la] construction de soi, comme appropriation de l’ensemble des événements vécus par un sujet 
pour leur donner du sens pour soi » 
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documentational trajectory the set of events, both individual and collective, grounding teachers’ 
documentational experience. Understanding how teachers develop their documentational experience 
allows us to analyze their professional development, defined, as proposed by Gueudet and Trouche 
(2008), as an interplay between the design of new resources, the development of knowledge 
(curricular, pedagogical and content), the evolution of their relationships with other actors of the 
educational system and the evolution of their professional beliefs. 
Teachers interact continuously with their students, colleagues, trainers… Teachers’ documentation 
work is then culturally and socially situated (Gueudet & Trouche 2008). This reality leads us to take 
into account the role of collectives in teachers’ documentation work. And our interest for analyzing 
how teachers develop their documentational experience over time leads us to consider all kinds of 
collectives that teachers can participate in: informal vs. formal, institutional vs. associative stable 
vs. momentary, among other features. In this perspective, we mobilize the broad notion of thought 
collective proposed by Fleck (1936, p. 44) existing as soon as “two or more people are exchanging 
thoughts”. Thought collective leads participants to develop a thought style, “characterized by 
standard features in the problems of interest to a thought collective, by the judgment which the 
thought collective considers evident, and by the methods which it applies as a means of cognition” 
(Fleck 1936, 99). The collectives that we are interested in are the collectives that contribute to 
resource design, particularly, to support teaching mathematics. The problems of interest to these 
thought collectives are related to the production of resources to teach mathematics. And we try to 
identify the judgment about mathematics and teaching mathematics and the methods applied by the 
collective. These judgements and methods are influenced by the members’ individual schemes. In 
this paper we analyze how teachers work together and how it influences their individual work. 
Understanding the individual/collective dialectics of schemes requires further work.  
Finally, we analyze teachers’ documentation work taking in account their individual work (a 
teacher interacting with resources), their collective work (a teacher meeting thought collectives and 
styles) and keeping one historical point of view (a teacher developing her documentational 
experience and trajectory). In the next section, we will present our methodological choices.  
Methodological Choices 
In this section, we present our methodological framework rooted in the principle of reflective 
investigation (Gueudet & Trouche 2012). Then, we present tools that we developed in our work 
with teachers, focusing on a tool named reflective mapping (Rocha 2018). Afterwards, we present 
our criteria for following the work of two middle school mathematics teachers. Finally, we present 
the way we analyze the thought style of a given collective.  
The reflective investigation proposes four principles for following teachers’ documentation work. 
Firstly, a long-term follow-up aiming to grasp an expanded view of teachers’ work with resources, 
helping to identify stable elements (operational invariants, particularly) and unstable (changes of 
practice) in teachers’ documentation work. Secondly, a teachers’ in- and out-of-class follow-up, 
because teachers’ work is not only when they teach their students; there are many occasions where 
teachers interact with resources, occasions that are essential for understanding their practice 
(teachers’ training, lesson preparation, informal interactions with colleagues, among others). 
Thirdly, a broad collection of the material resources used or designed by teachers. Finally, a 
reflective follow-up, grounding our design of methodological tools. This last principle has also one 
formative intention leading teachers to reflect about their work.  
Our methodological tools include three categories for three purposes:  
(1) Face-to-face follow-up, that means follow-up of teachers preparing then implementing a given 
lesson; we record these moments (audio and video) and collect every resource used or designed in 
these circumstances; 
(2) Distance follow-up, that means here the development of an online folder shared with teachers, in 
which they can store their resources and interact with the researcher; 
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And (3) a reflective follow up, that means we develop interviews that lead teachers to reflect about 
their work with resources. In this article, we explore one tool developed for this purpose, the 
Reflective Mapping of Documentational Trajectory (RMDT). Teachers design this mapping during 
a reflective interview. Teachers are asked to represent on a time axis events that were remarkable to 
them for having some impact in their documentation work and to list some resources associated to 
them. This tool is inspired by the schematic representation of resources system (SRRS) proposed by 
Gueudet and Trouche (2012). We chose the word mapping instead of representation, because it 
gives some more dynamic aspects (Rocha 2018): the map results from the exploration of a territory, 
and it develops over the exploration itself. This map gives to us a panoramic view of the teachers’ 
resource system developing over the time, and in particular the major events.  
We had five criteria for choosing the two middle school mathematics teachers to be followed, Anna 
and Viviane. First, we looked for two middle school teachers who work in different schools, to have 
different contexts. Secondly, teachers with contrasted profiles in terms of documentational 
experiences: for this purpose, we chose one teacher participating intensively in collectives outside 
of her school and another participating in collectives only in her school. Thirdly, teachers who have 
the same textbook in class, for analyzing how the same resource can nourish different 
documentation work. Fourthly, teachers having more than fifteen years of experience, looking for 
long trajectories. Finally, we chose teachers who have a closely work with one colleague in their 
school; Wang (2018) named such a colleague a documentation-working mate. This criterion is very 
helpful for analyzing teachers’ documentation work, because when teachers produce resources 
together we have access to a rich dialogue between them. This dialogue gives to us more 
information about the springs of their documentation work.  
The criterion “documentation-working mate” also corresponds to our interest for analyzing 
influences of teachers’ collective work on their work with resources. The teacher and her mate form 
a thought collective. And for analyzing teachers’ collective documentation work, we identify their 
thought style considering two points coming from Fleck’s definition: their judgments and methods. 
We will consider the collective’s judgment about mathematics and teaching mathematics as the 
pedagogical assumptions, i.e. its points of view about teaching mathematics and using curricular 
digital resources, among others. Also, we will analyze the collective’s methods for creating 
resources as the functioning mode, member status, and type of interaction, among others.  
Anna was followed since March 2015 and Viviane since July 2016. This follow-up happened in a 
moment of curricular changes. For this reason, we followed their documentation work to prepare 
and implement a new subject, algorithms and programming in 6th, 7th, 8th and 9th grade, in the 
design of new resources. In the next section, we present our preliminary analysis of these two cases.  
Data Analysis  
We split our analysis in two parts, one for each case study. For each part, we first present the 
teacher’s RMDT, giving means for understanding how they develop their documentational 
experience. Then we present some elements of thought style appearing in the preparation of one 
lesson to teach algorithms and programming. Finally, we infer one scheme structuring their lesson 
preparation and implementation. This analysis is ongoing and for now we identify only this scheme, 
but we will identify other schemes in future research. 
Anna’s case 
We have divided this section in two parts. In the first part, we explore Anna’s documentational 
trajectory and evidence some elements that structure her documentational work. In the second part, 
we analyze her lesson preparation about algorithmic and programming and its implementation.  

Evolution of teachers’ documentation work over time 
In Figure 1 we present our digital transposition of Anna’s RMDT. This map presenting many 
information, we focus here on three aspects.  
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i) The stable collectives. We start by analyzing the events represented above the time line, related to 
(our categorization): institution, collectives outside school and collectives inside school. Most of 
them are related to collectives outside of school. Among them, three are stable collectives: 
Sésames 3  (gathering teachers for reflecting about teaching Algebra); APMEP 4  (professional 
association of mathematics teachers); IREM5 (a university structure, gathering primary, secondary 
and university teachers, and researchers, for reflecting about math teaching). And the three other 
projects in this category are related to her work in Sésames.  
 

 
Figure 2- Our digital transposition of Anna's RMTD 

ii) Among the stable collectives, the collective appearing as the most resource-influencing. Sésames 
occupies indeed an important place. This is a collective coordinated by one researcher that proposes 
to teachers take a role of researcher to rethinking their practices. Its members discuss teaching 
algebra in college and high school. Using Sésames website we inferred some elements of their 
thought style: (1) judgments about teaching mathematics: providing rich and open problems; 
stimulating student research; stimulate the development of strategies, among others; (2) methods to 
create resources: teachers work deciding everything together with researchers and test their 
activities in class. The last aspect in Anna’s RMDT is her work with Cindy (her documentation 
working mate): they work together in the same school and in Sésames, and they also conduct some 
teachers’ trainings using Sésames activities.  
iii) For the most influencing collective, the resource appearing as the most resource-structuring. 
Sésames members created a resource that was very important for the group and for Anna, the “Mise 
en train” (MET). MET is a set of principles guiding a part of their documentation work since the 
lesson preparation until its implementation: first, the activities need to be short for warming 
students in the first 15 minutes in class. Second, the activities are created to teach one mathematical 
notion, dividing this teaching in short parts over time. Third, the activities use open problems for 
bringing students to research. Finally, the end of the 15 minutes has to be dedicated for 
institutionalizing the new knowledge in a collective moment. MET grounds the thought style of 
Sésames. However, Anna and Cindy extended these principles for all domains of mathematics 
teaching. They published articles for disseminating this resource and they use it for teachers’ 
training.  
                                                                            
3 Science Education: Modeling Activities, Assessment, Simulation (http://pegame.ens-lyon.fr/).  
4 French national mathematics teacher association (http://www.apmep.fr/). 
5 French research institute about teaching mathematics in Lyon (http://www.univ-irem.fr/). 
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Crossing data from Anna’s RMDT and our interviews, we evidence structuring aspects in her 
documentational experience:  

i)  She does not like to work alone; she always works with colleagues for designing her 
resources.  

ii) For creating her resources, she prefers to start with resources specifying didactical intentions 
of the authors. This demand affects her relationship with textbooks, and then she uses them 
only for giving additional exercises to students.  

iii) For renewing her lessons, she stays connected to many social networks for getting new ideas 
and resources. She developed her resource system in including new tools to save online 
information as Padlet (https://padlet.com/), that is an application to save, organize and share 
each one’s favourite resources. 

iv) For supporting her work in many collectives, she developed her resource system supported 
by digital tools for sharing resources in ‘the cloud’.  

v) She is in a moment of her career where she wants to share her resources with her colleagues. 
For example, she promotes MET resources in IREM and APMEP. She develops resources in 
one collective and leads them to other collectives. 

These aspects structure also her implementation of the new curriculum; this is the purpose of the 
next section.  

Implementing new curricular purposes  
We follow Anna’s lesson preparation and implementation of one lesson to teach algorithms and 
programming in 6th grade. She prepared her lesson with her documentation-working mate, Cindy. 
Their thought style for creating resources appears clearly: 
• Judgments: they looked for resources to teach algorithmic as thinking about mathematics 

and putting students to research; they did not want to base their teaching on only one 
software (to be noticed: the software Scratch is strongly recommended by the inspectors);  

• Methods: they prepare their lessons taking decisions for each task together; gathered all 
possible resources coming for the ancient curriculum that could still be interesting to use 
(many textbooks, sites, etc.). They do not like so much to use textbooks (Aii). 

For this lesson preparation, Anna used a padlet. She saved during the year before the curricular 
reform resources that she thought relevant for this teaching (Aiii). Anna and Cindy started their 
lesson preparation in reading curricular propositions. They discussed a lot about many activities that 
they have seen or heard of, and they surfed over many textbooks. They did not choose textbook 
resources; they selected some open online resources. We present here just one resource that we 
follow during their documentation work, entitled the crépier psychorigide6. The objectives of this 
resource are introduction of algorithmic thinking and work with algorithmic writing. A team of 
IREM-Grenoble, giving many didactical advices that are taken into account by Anna, proposed this 
resource. In our observation, Anna incites and gives a lot of time to students for research and 
discussion of results.  
In our initial analysis, we identify one scheme: choosing tasks to work with students. The aim in this 
scheme was to find tasks for teaching algorithmic and programming. We identify two operational 
invariants: working with algorithmic favors working with situations that put students in research; 
put students in research makes learning more meaningful. These operational invariants are linked 
with many rules of action: proposing students to work in groups, proposing them open problems, 
stimulating students’ research, among others. We can see that this lesson respects some principles 

                                                                            
6 http://www-irem.ujf-grenoble.fr/spip/IMG/pdf/fiche_prof_crepier_psychorigide.pdf 
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of MET, but it is not a MET. However, theses similarities lead us to infer the influences of Sésames 
thought style in Anna’s lesson preparation of algorithmic and programming.  
Generally, Anna’s documentational experience is developed through her work in many thought 
collectives. These collectives support her reflection about curricular changes. And her work with 
Cindy for preparing lessons helps her to interpret curricular purposes and to link them with her 
documentation work.  
Viviane’s case 
We have divided this section in two parts. The first one explores Viviane’s documentational 
trajectory evidencing some elements that structure her documentational work r facing curriculum 
changes. The second one analyzes her lesson preparation on algorithmic and programming and its 
implementation.  

Evolution of teachers’ documentation work over time 
In Figure 2 we present our digital transposition of Viviane’s RMDT. We use the same categories 
that in Anna’s case for classifying events (institution, collectives outside and inside of school). We 
observe 14 events and we focus on three points.  

(i) We observe that most of them (six events represented in brown in Figure 2) are institutional 
ones: two of them are related to changes of curriculum that lead this teacher to integrate and 
create new resources; two related to her change of school giving her the opportunity to have 
access to new software and to exchange with new colleagues; one other is her change of 
status in school being the main teacher for grade 6 class; and the last one the emergence of 
needs for students with a particular profile. 

(ii) We observe that her collective work is concentrated on her exchange with colleagues in 
school. These collectives are more informal and momentary than in Anna’s case, and then it 
is very complex to identify their thought style. However, we observe that they have a central 
function: exchanging experiences about lessons in class and resources (booklets, software, 
activities, among others).  

(iii) Her implication in teachers’ training two times by year. This training is for her a moment for 
looking for new practices and new resources to use with her students. These events are thus 
very important to her. Another important aspect about her participation in this training is 
that all mathematics teachers of her lower secondary school were involved in it.  
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Figure 3-Our digital transposition of Viviane's RMTD 

These stages led Viviane to incorporate new resources and new practices. She presented during her 
interview five different teachers’ training that she remembered in her career. One training that led 
her to ‘playful math’ to introduce or apply mathematical notions. In this training, she found new 
resources as APMEP booklets and one new institutional website giving new ideas. One other 
training gave some ideas for introducing in class challenging problems from mathematics 
competitions. She had one training about teaching geometry, in which she learnt about different 
tools and problems to introduce new notions. And the other two trainings are related. In one year, 
she participated to a training given by Anna, in which she heard about MET to teach mental 
calculations. And then she implemented some MET in her class. She used short activities (15 min) 
for warming up students, but not necessarily leading her to put students to research. In the other 
year, she participated to one other training given by Anna and Cindy, where they discuss MET 
design for working on all mathematical notions. In this training, Viviane and her school colleagues 
prepared activities with teachers of other schools. They chose to work with introduction of 
perimeter using MET. They experimented activities in their class and they discussed afterwards in 
the following training meeting. To Viviane, it is a good occasion for designing collectively 
resources and for exchanging their results. 
We also confront data from Viviane’s RMDT and our interviews, and we observe structuring 
aspects in her documentational experience:  

i)  She considers important to exchange experiences and resources with her colleagues in 
school.  

ii) For creating her resources, most part of her lesson came from textbooks, institutional 
resources and official collective’s booklets. 

iii) She renews her lessons and practice through participation to teachers’ training;  
iv) Many changes in her documentation work is linked to institutional changes. They led her to 

look for new resources and practices; 
v)  In her resource system, digital resources are used to support her exchange with colleagues, 

some institutional sites and some software.  
We suppose that some of these aspects structure her implementation of new curriculum too. We 
will explore this hypothesis in the next section.  
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Implementing new curricular purposes  
We followed Viviane’s lesson preparation and implementation of one lesson about algorithms and 
programming in 7th grade. She prepared her lesson exchanging resources with her 
documentation-working mate, Jessica. About their thought style for creating resources:  
• Judgments: they looked for playful activities that keep students autonomous and mobilize 

mathematics concepts; they wanted to use Scratch to work on mathematical concepts and to 
connect them with algorithmic and programming. 

• Methods: they prepared their lessons and activities throughout a work dividing tasks, 
Viviane prepared activities for the 7th grade and Jessica for 6th; They found their activities 
reading textbooks; they never used textbooks activities like they are, they changed and 
created their own student’s file. 

Before the curricular reform Viviane participated in institutional training for using Scratch and she 
exchanged informally with other colleagues in her school meetings (Viii). For generating ideas, she 
used government regional site, textbooks and exchanges with colleagues (Vi, Vii). Most of the 
activities prepared were found in textbooks and adapted in the student’s sheets (Vii). And the lesson 
that we observed was about: (1) the mobilization of the properties of quadrilaterals and triangles 
and (2) the work with the programming language.  
In the same way, we identify the same situations class than in Anna’s case: choosing tasks to work 
with students. This scheme comprises operational invariants: working with programming allows to 
propose activities in which students work in an autonomous way; students working in an 
autonomous way are responsible for their learning. We identify many rules: the tasks proposed for 
programming are chosen to allow the application of already learnt mathematical knowledge, 
students work in pairs, enough time is given to students for answering the questions, etc. We 
observe similarities between the thought style of her work with Jessica and her work in class.  
Generally, Viviane’s documentational experience is strongly linked with changes in her institution 
and with interactions with her colleagues. The interactions in her school support her reflection about 
curricular changes. And her work with Jessica helps her to exchange experiences and ideas about 
the new curriculum.  
Final considerations 
We start our considerations by some results of our cases studies. We observe that Anna and 
Viviane’s documentational trajectories present some common points and some differences.  
• For both of them, collective work is important for their documentation work, and it is a way 

for validating their work in class. However, their way to work collectively is quite different, 
Anna’s collective work develops more outside of school and Viviane’s inside of school;  

• Both of them work with one documentation-working mate, but in a different way. Anna 
looks for establishing a coherent work with the teachers inside her school, for having the 
same vocabulary and similar resources. Viviane tries to share the work for facilitating 
resources production and exchange resources; 

• About their resource system we observe two points. Textbooks are used differently (for 
Viviane the textbook is an important resource and for Anna only one exercises’ source for 
complementing her lesson). Digital resources are central to Anna and complementary 
resources to Viviane; 

• About teaching algorithmic and programming, Anna starts to prepare for curricular changes 
before their implementation in many collectives. Viviane exchanges some informal ideas 
with colleagues before, but her work was more intense after curricular implementation.  

We could observe influences of collective work in teachers’ design decisions.  
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Anna and Cindy design their lesson and search for resources together; their work with resources is 
coherent with Sésames’ thought style; they start to think about the new program before the 
curricular changes in diverse collectives (using temporary version of the curriculum), and 
accumulating resources found during that.  
Viviane and Jessica divided their work for creating their resources and after they exchanged their 
activities; they did not work collectively outside of their school; they started to prepare their lesson 
during reform implementation, based on resources extracted from the textbook. Analyzing teachers’ 
work with their documentation working mate was interesting for a better understanding of their 
documentation work, because their discussion during lesson preparation was very rich and natural.  
We go back to our research question: how might we understand the processes by which teachers 
engage with curriculum resources to design instruction? We draw, from our study, five elements of 
answers. Firstly, the work with the documentation mate appears as a good frame for analyzing 
collective thought style, because teachers’ exchanges are very rich; secondly, we consider that 
curricular changes were a good occasion for analyzing the features of teachers’ documentation work 
and development of operational invariants, because it was a moment of learning and creating new 
resources for teaching new contents. Thirdly, for us, analyzing the history of resource design by 
teachers helped us to understand the operational invariants guiding their choices. Fourthly, the 
articulation between the teachers’ reflectivity and their analysis in action helped us to analyze the 
process of knowledge development. And lastly, the development of the concept of documentational 
trajectory was relevant for analyzing interactions between resources, collective work and teachers’ 
practice.  
Many questions related to our conceptual propositions and methodological choices stay open, 
especially in relation to the concepts of documentational experience and trajectory. We proposed 
definitions that are in development, that need to be more refined. However, it appears very 
important to consider teachers’ appropriation of their past work with resources through their 
reflection about their work. In fact, analyzing teachers’ experience helps us to understand the 
springs of their documentation work. In this sense, reflective mapping was an efficient tool to 
collect their point of view about their documentation work. It was important too to take into account 
the accumulation of past documentation work. It evidences indeed a set of knowledge and resources 
that teachers developed over the time.  
For the future, we will address at least three important issues. Firstly, it seems interesting to analyze 
other teachers’ documentational trajectories for better understanding teachers’ professional 
development over time. Secondly, working with teachers from different disciplines could contribute 
to this reflection, evidencing eventual features depending on the discipline. Last, we could question 
the effects of developing the teachers’ reflectivity on his/her practice in class. 
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