

Cidades Conectadas: Grafos, Cálculos e Impacto Ambiental

Resumo:

O presente minicurso tem como objetivo apresentar uma proposta didática voltada para o 9° ano do Ensino Fundamental, integrando o estudo de grafos à análise de problemas ambientais e urbanos contemporâneos. A partir de situações contextualizadas, os participantes serão convidados a construir diferentes configurações de cidades e sistemas urbanos visando a sustentabilidade e explorá-los, utilizando conceitos matemáticos como operações com números racionais, medidas, proporcionalidade e estimativas. A proposta valoriza a interdisciplinaridade, promovendo conexões entre a Matemática, a Geografia e a Educação Ambiental. As atividades práticas favorecem o pensamento crítico, a autonomia e a resolução de problemas com significado. Pretende-se também fomentar a discussão sobre o uso consciente dos recursos naturais, os impactos das escolhas humanas e a responsabilidade social no planejamento urbano sustentável.

Palavras-chaves: Grafos. Sustentabilidade. Educação Ambiental. Matemática. Cidades.

Ementa

O minicurso propõe a construção e análise de grafos urbanos como estratégia didática para o ensino da Matemática voltado aos anos finais do Ensino Fundamental, tendo como eixo temático a sustentabilidade e os desafios ambientais das cidades contemporâneas. Por meio da representação gráfica de diferentes configurações urbanas, serão explorados conceitos matemáticos como operações com números naturais, racionais e reais, estimativas, medidas de tempo, distância e área, além de proporcionalidade. Tais elementos servirão de base para a resolução de problemas relacionados a deslocamentos, emissões de gases poluentes, densidade populacional e cobertura vegetal.

Adrielle Santos Cardoso

Universidade Estadual de Santa Cruz Ilhéus, BA – Brasil

https://orcid.org/0009-0006-0928-2157
adriellesantoscardoso565@gmail.com

Alex Costa Santos

Universidade Estadual de Santa Cruz Ilhéus, BA – Brasil

https://orcid.org/0000-0002-8974-9696

keep lxctsantos@gmail.com

Carlos de Araújo Scher

Universidade Estadual de Santa Cruz Ilhéus, BA – Brasil

https://orcid.org/0009-0008-5026-2080 mail@email.com.br

João Vitor dos Santos Reis

Universidade Estadual de Santa Cruz Ilhéus, BA – Brasil

http://orcid.org/0000-0000-0000-0000

jvsreis.lma@uesc.br

Kétele dos Santos da Paixão

Universidade Estadual de Santa Cruz Ilhéus, BA – Brasil

http://orcid.org/0000-0000-0000-0000
santos18paixao@gmail.com

Recebido • 04/04/2025

Aprovado • 05/06/2025

Publicado • 08/08/2025

Minicurso

A proposta visa estimular a articulação entre o conhecimento matemático e os contextos sociais e ambientais em que os estudantes estão inseridos, promovendo uma abordagem interdisciplinar e

crítica. O trabalho com grafos será desenvolvido como ferramenta de visualização e análise, permitindo discussões sobre planejamento urbano, mobilidade sustentável, justiça ambiental e o papel da matemática na compreensão e transformação da realidade.

Justificativa

A formação matemática dos alunos deve contemplar não apenas o domínio dos conteúdos específicos da disciplina, mas também conteúdos interceccionais com questões sociais, ambientais e culturais que atravessam a realidade dos estudantes. Nesse sentido, torna-se fundamental propor abordagens didáticas que integrem o conhecimento matemático à vivência cotidiana, promovendo aprendizagens significativas e críticas. Com base nas diretrizes da Base Nacional Comum Curricular (BNCC) (BRASIL, 2017), que destaca a importância da resolução de problemas e da contextualização dos conteúdos, e em consonância com o tema central do XXI Encontro Baiano de Educação Matemática — "Educar com a Matemática: contextos e práticas na articulação universidade-escola" — este minicurso apresenta uma proposta que une o estudo dos grafos ao debate sobre sustentabilidade urbana.

Os grafos, enquanto representações de redes e conexões, oferecem uma linguagem acessível e versátil para tratar de temas como mobilidade, infraestrutura e organização das cidades. Quando associados a dados sobre emissão de gases poluentes, tempo de deslocamento e cobertura vegetal, permitem análises quantitativas que enriquecem o trabalho em sala de aula. Além disso, favorecem a interdisciplinaridade com áreas como Geografia, Ciências e Educação Ambiental.

Ao propor a análise de mapas urbanos e a construção de grafos para a resolução de problemas contextualizados, o minicurso busca fomentar o pensamento crítico e a criatividade dos alunos, valorizando a Matemática como ferramenta para interpretar e transformar a realidade.

Público

Este minicurso foi pensado para estudantes do 9º ano do Ensino Fundamental para promover uma compreensão da matemática de forma mais conectada ao mundo ao seu redor.

Conteúdo programático

1. Apresentação do minicurso e contextualização socioambiental:

Introdução ao tema do minicurso com base em dados, imagens e mapas urbanos reais. Discussão sobre desafios contemporâneos nas cidades, como mobilidade, poluição, desigualdade no uso do solo e sustentabilidade ambiental. Serão introduzidos conceitos como uso e ocupação do solo, áreas urbanas versus áreas verdes, e elementos que influenciam a organização espacial urbana, estabelecendo as bases para a construção das cidades-modelo.

2. Problematização e planejamento coletivo de cidades:

Proposição de uma situação-problema para orientar a construção de mapas urbanos ideais. Reflexão sobre critérios como densidade populacional, zonas residenciais, comerciais e industriais,

presença e distribuição de áreas verdes, transporte público e acessibilidade. Serão abordadas noções de proporcionalidade e escalas, associadas à organização funcional do espaço e à representação quantitativa dos elementos urbanos.

3. Construção de representações urbanas em papel quadriculado:

Organização dos participantes em grupos para construção de cidades-modelo utilizando papel quadriculado. Definição de zonas, localização de equipamentos urbanos e desenho de rotas de deslocamento, com base em critérios pré-estabelecidos. Essa etapa envolve a aplicação de conceitos geométricos (localização e orientação no plano, uso de malha quadriculada, simetria) e quantitativos (contagem, estimativas, proporções).

4. Formulação e resolução de problemas matemáticos contextualizados:

Proposição de desafios envolvendo cálculos com números racionais e estimativas: tempo de deslocamento, distâncias percorridas, consumo de combustível, emissão de gases poluentes, custo por quilômetro e proporção de áreas verdes por habitante. Serão trabalhadas operações com números racionais (adição, subtração, multiplicação, divisão), porcentagens, razão e proporção, além de conversões de unidades de medida (tempo, distância, área, volume e emissão de CO₂).

5. Discussão sobre escolhas urbanas e sustentabilidade:

Análise coletiva das implicações dos trajetos definidos e das soluções propostas. Reflexão sobre o impacto das decisões urbanísticas na qualidade de vida, no meio ambiente e na eficiência do deslocamento. Serão retomados os dados levantados nas atividades anteriores para estimular a análise crítica dos padrões de mobilidade e o debate sobre sustentabilidade, eficiência energética e justiça espacial.

6. Sistematização e formalização do conceito de grafo:

A partir das representações construídas e das discussões realizadas, será feita a introdução formal dos conceitos de grafos, vértices, arestas, caminhos e ciclos, utilizando como base as cidadesmodelo criadas pelos participantes. Serão abordadas noções de grafos conexos e não conexos, trajetos mínimos, redundância e eficiência de redes, associando a estrutura matemática à realidade urbana representada.

7. Reflexão sobre práticas pedagógicas e possibilidades didáticas:

Encerramento com discussão sobre como a atividade pode ser adaptada ao contexto escolar. Troca de experiências entre os participantes e análise de como a abordagem pode contribuir para o ensino contextualizado da matemática. Serão debatidas possibilidades de articulação com a BNCC, metodologias ativas, interdisciplinaridade e formação cidadã por meio do ensino da matemática.

Metodologia

1. Etapas do Minicurso

O minicurso será conduzido de forma prática, colaborativa e reflexiva, dividido em quatro momentos principais:

1.1 Contextualização Inicial

Objetivo: Introduzir questões ambientais e urbanas relacionadas à mobilidade, emissão de poluentes e distribuição de áreas verdes.

Atividades:

- Apresentação de imagens, mapas e dados reais sobre cidades e impactos ambientais.
- Debate sobre planejamento urbano sustentável envolvendo perguntas como:

"Se vocês pudessem redesenhar a cidade onde vivem, o que mudariam para torná-la mais sustentável?";

"Imaginem que têm um orçamento limitado para melhorar o transporte público, reduzir a poluição e aumentar as áreas verdes. Qual seria a prioridade de vocês e por quê?";

"Como os números podem ajudar a tomar decisões no planejamento urbano?";

"Que tipo de cálculos são importantes para tornar uma cidade eficiente e sustentável?".

1.2 Construção de Mapas Urbanos

Atividades:

- Formação de grupos e definição de critérios (habitantes, densidade, infraestrutura viária).
- Desenho da cidade em papel quadriculado por meio de grafos, com os nós representando locais e as arestas representando as ruas da cidade.
 - Discussão sobre planejamento urbano e suas implicações.

1.3 Resolução de Problemas Matemáticos

Atividades:

- Cálculo do tempo de deslocamento entre pontos.
- Proporção de áreas verdes por habitante.
- Estimativas de emissão de CO₂ por diferentes meios de transporte.
- Cálculo da produção de lixo na cidade

Conceitos Matemáticos Mobilizados: Razões, proporções, medidas, estimativas, operações com números racionais.

1.4 Discussão Final e Formalização Conceitual

Atividades:

- 5
- Apresentação das cidades criadas e resultados das análises matemáticas.
- Discussão coletiva sobre os padrões emergentes nas cidades idealizadas.
- Introdução formal ao conceito de grafos, reconhecendo vértices e arestas nas representações urbanas.
 - Comparação com redes reais e impactos matemáticos no planejamento urbano.

Recursos

Serão utilizados computador, projetor multimídia e quadro branco (disponibilizados pelo evento). Os demais materiais de responsabilidade dos autores serão papel quadriculado, lápis, réguas, canetas coloridas, calculadoras e fichas de atividade.

Avaliação

A avaliação será processual e qualitativa, baseada na observação do envolvimento dos participantes ao longo das atividades propostas. Serão considerados aspectos como a participação ativa nas tarefas em grupo, a resolução das situações-problema e as contribuições durante as discussões coletivas. A aprendizagem será acompanhada a partir da capacidade dos participantes de articular conceitos matemáticos a questões ambientais e urbanas de forma crítica e contextualizada. Ao final do minicurso, será aplicado um breve formulário de avaliação, com questões abertas e fechadas, a fim de colher impressões sobre a proposta, identificar pontos de destaque e sugerir aprimoramentos. Essa devolutiva contribuirá para o aperfeiçoamento de futuras ações formativas com a mesma abordagem.

Referências

BRASIL. Ministério da Educação. Base Nacional Comum Curricular. Brasília, DF, 2017. Disponível em: http://basenacionalcomum.mec.gov.br/. Acesso em: 04 mai. 2025.

D'AMBROSIO, U. Educação Matemática: da teoria à prática. São Paulo: Papirus, 1996.

ESTADÃO. Educação financeira e inflação: use notícias para trabalhar os temas. Estadão na Escola. Disponível em: https://www.estadao.com.br/educacao/estadao-na-escola/educacao-financeira-e-inflacao-use-noticias-para-trabalhar-os-temas/. Acesso em: 27 out. 2023.

LORENZATO, S. O que é Modelagem Matemática. São Paulo: Autores Associados, 2006.

MACHADO, S. D. C.; PAIS, L. P. Grafos: uma abordagem para o Ensino Fundamental e Médio. In: ENCONTRO NACIONAL DE EDUCAÇÃO MATEMÁTICA, 9., 2007, Belo Horizonte. Anais [...].

MOURA, M. O. Modelagem Matemática e o ensino-aprendizagem: algumas reflexões. Bolema, Rio Claro, v. 25, n. 41, p. 123-144, 2011.

NOVA ESCOLA. Proporcionalidade direta, inversa e a não proporcionalidade. Planos de Aula. Disponível em:
https://novaescola.org.br/planos-de-aula/fundamental/8ano/matematica/sequencia/proporcionalidade-direta-inversa-e-a-nao-proporcionalidade/109. Acesso em: 27 out. 2023.

SKOVSMOSE, O. Educação Matemática Crítica: a questão do sujeito. Campinas: Autores Associados, 2001.

VIAMÃO (RS). Prefeitura Municipal. Rede municipal inicia a discussão da BNCC com as equipes diretivas. Notícias. Disponível em: https://www.viamao.rs.gov.br/portal/noticias/0/3/4030/Redemunicipal-inicia-a-discussao-da-BNCC-com-as-equipes-diretivas. Acesso em: 27 out. 2023.