

Tarefas para o estudo de funções seno e cosseno: uma análise de livro sob a lente do mecanismo atencional *top-down* e da TAD

Eliane Santana de Souza Oliveira¹ Laerte Silva da Fonseca²

Resumo: O objetivo deste trabalho é analisar tarefas matemáticas para o estudo de funções seno e cosseno na perspectiva do mecanismo atencional cerebral *top-down*, articulado à Teoria Antropológica do Didático (TAD). A análise ocorre sobre as tarefas de um livro didático do Novo Ensino Médio, a fim de compreender os mecanismos atencionais mobilizados e as praxeologias matemáticas evocadas na resolução das atividades de funções seno e cosseno. O referencial teórico e metodológico adotado é a Teoria Antropológica do Didático (TAD), além dos requisitos mínimos para a elaboração do tipo de tarefas trigonométricas e da Neurociência Cognitiva, com o intuito de ativar o mecanismo atencional *top-down*. Os resultados apontam que a mobilização de requisitos ligados à atenção do mecanismo atencional *top-down* em tarefas matemáticas pode favorecer o ensino e a aprendizagem das funções seno e cosseno.

Palavras-chave: Mecanismos Atencionais. Funções Seno e Cosseno. Tarefas Matemáticas. Teoria Antropológica do Didático.

Tasks for studying sine and cosine functions: a book analysis from the perspective of the top-down attentional mechanism and TAD

Abstract: The objective of this study is to analyze mathematical tasks related to the study of sine and cosine functions from the perspective of the top-down cerebral attentional mechanism, articulated with the Anthropological Theory of Didactics (TAD). The analysis is based on tasks from a New High School textbook in order to understand the attentional mechanisms mobilized and the mathematical praxeologies evoked in the resolution of activities involving sine and cosine functions. The theoretical and methodological framework adopted is the Anthropological Theory of Didactics (TAD), along with the minimum requirements for the development of trigonometric tasks and Cognitive Neuroscience, aiming to activate the top-down attentional mechanism. The results indicate that integrating requirements related to the attention of the top-down attentional mechanism in mathematical tasks can enhance the teaching and learning of sine and cosine functions.

Keywords: Attentional Mechanisms. Sine and Cosine Functions. Mathematical Tasks. Anthropological Theory of Didactics.

Tareas para el estudio de funciones seno y coseno: análisis de un libro desde la perspectiva del mecanismo atencional de arriba hacia abajo y TAD

Resumen: El objetivo de este estudio es analizar tareas matemáticas relacionadas con el estudio de las funciones seno y coseno, considerando el mecanismo atencional cerebral top-down en articulación con la Teoría Antropológica de la Didáctica. El análisis se basa en tareas de un libro de texto de la Nueva Secundaria, con el propósito de comprender los mecanismos atencionales movilizados y las praxeologías matemáticas evocadas en la resolución de dichas tareas. El marco teórico y metodológico adoptado combina la Teoría Antropológica de la Didáctica, los requisitos fundamentales para el diseño de tareas trigonométricas y la Neurociencia Cognitiva, con el objetivo de activar el mecanismo atencional top-down. Los resultados indican que la incorporación de requisitos vinculados a la atención del mecanismo atencional top-down en las tareas matemáticas puede favorecer el proceso de enseñanza

² Livre Docência em Didática da Matemática (EBWU, Flórida/EUA). Instituto Federal de Sergipe/IFS. Aracaju, SE, Brasil. E-mail: laerte.fonseca@ifs.edu - Orcid: https://orcid.org/0000-0002-0215-0606.

eISSN 2317-904X

_

¹ Doutora em Ensino, Filosofia e História das Ciências (UFBA/UEFS). Universidade Estadual de Feira de Santana/UEFS, Feira de Santana, BA, Brasil. E-mail: essoliveira@uefs.br - Orcid: https://orcid.org/0000-0003-3981-1620.

y aprendizaje de las funciones seno y coseno.

Palabras clave: Mecanismos Atencionales. Funciones Seno y Coseno. Tareas Matemáticas. Teoría Antropológica de la Didáctica.

1 Introdução

Ao pesquisar sobre os processos de ensino e de aprendizagem na literatura das funções seno e cosseno, observamos que alguns trabalhos, como os de Fonseca (2015, 2010), Oliveira (2020), Coloneze (2012) e Costa (1997), indicam que os estudantes apresentam dificuldades em trigonometria e em funções trigonométricas. Isso pode estar relacionado à forma de abordagem desse conteúdo – muitas vezes tratado de maneira que não agrega sentido para os estudantes, além da ausência de correlação dos assuntos com o cotidiano dos educandos.

Outro fator a ser considerado é que, se o objeto do saber matemático abordado não estiver integrado a elementos que façam sentido para o estudante, isso pode levar à ausência de atenção. Fonseca, Campos e Oliveira (2021) destacam que, muitas vezes, as dificuldades relacionadas às funções trigonométricas podem estar atreladas à atenção, uma vez que ela desempenha um papel essencial no desenvolvimento cognitivo dos estudantes e na aprendizagem.

Além disso, os autores ressaltam que as diferentes representações são cruciais para a compreensão das funções trigonométricas (Fonseca; Campos; Oliveira, 2021). Para isso, é necessário evocar diferentes objetos de natureza sensível e material, que possibilitem a manipulação e a implantação da atividade matemática. Esses objetos são denominados por Bosch e Chevallard (1999) como *objetos ostensivos*. Há também objetos que não são visualizados, mostrados ou verbalizados por conta própria, apesar de existirem institucionalmente: são os *objetos não ostensivos*, os quais necessitam dos objetos ostensivos para serem evocados.

Destarte, o objetivo deste trabalho é analisar tarefas matemáticas para o estudo de funções seno e cosseno na perspectiva do mecanismo atencional cerebral *top-down*, articulado à Teoria Antropológica do Didático (TAD). Para esse propósito, foram analisadas tarefas matemáticas de um livro didático do Novo Ensino Médio, da *Coleção Prisma Matemática*, denominado *Geometria e Trigonometria*, com o intuito de compreender os mecanismos atencionais mobilizados e as praxeologias matemáticas evocadas na resolução das tarefas envolvendo as funções seno e cosseno. Fundamentamo-nos na TAD, além dos requisitos mínimos para a elaboração do tipo de tarefas trigonométricas e Neurociência Cognitiva, com o intuito de ativar o mecanismo atencional *top-down*.

A escolha pelo estudo dos mecanismos atencionais deve-se ao fato de acreditarmos que eles podem favorecer a aprendizagem das funções seno e cosseno. Gazzaniga e colaboradores (2006, p. 265) afirmam que "a atenção é um mecanismo cerebral cognitivo que possibilita alguém processar informações, pensamentos ou ações relevantes, enquanto ignora outros irrelevantes ou dispersivos". A opção por investigar os mecanismos atencionais justifica-se pela importância da atenção para os processos de ensino e de aprendizagem, especialmente na forma de atenção seletiva e concentrada.

Nesse sentido, buscamos articular a aprendizagem das funções seno e cosseno, por meio da TAD, com os mecanismos neurais *bottom-up* e *top-down*. O mecanismo *bottom-up* está relacionado aos estímulos e pistas provenientes do meio externo ao cérebro; já o *top-down* refere-se à atividade cognitiva voltada ao intuito de traçar metas para uma orientação desejável, envolvendo representação mental, cognição e atividade mnemônica (Pashler; Johnston; Ruthruff, 2001).

Essa aproximação entre a TAD e a Neurociência Cognitiva (NC), por meio da articulação entre os objetos ostensivos e não ostensivos e os mecanismos neurais *bottom-up* e *top-down*, tem o intuito de compreender, nas tarefas matemáticas analisadas, os requisitos mínimos para a mobilização da atenção e do mecanismo *top-down*.

2 Uma breve reflexão sobre a TAD

Ao buscar favorecer o estudo das funções seno e cosseno, nos convém refletir sobre as praxeologias matemáticas relacionadas a esse saber. Nesse sentido, a TAD desempenha um papel fundamental para a evolução desse estudo. A TAD possibilita construir propostas que busquem suprir as lacunas presentes no processo de ensino e aprendizagem, por meio das organizações praxeológicas matemáticas e didáticas. O significado de *praxeologia* relaciona-se ao termo *práxis*, que significa prática, e *logos*, que equivale à razão (Chevallard, 2002).

Chevallard (2002) defende que, em qualquer atividade humana, há uma organização. Nesse sentido, essa organização pode ser estruturada por um tipo de tarefa a ser realizada, a qual deve ser executada por meio de uma técnica, que se justifica por uma tecnologia voltada ao saber e, por sua vez, fundamentada em uma teoria. Desse modo, apresenta-se o que Chevallard (2002) denomina de Organização Matemática (OM) e Organização Didática (OD).

A OM está relacionada a uma estruturação das atividades matemáticas, as quais estão atreladas a uma OD. De acordo com Chevallard (1999), na OM temos as organizações praxeológicas ou praxeologias, composta por quatro elementos: tipos de tarefas, técnica,

tecnologia e teoria, representados respectivamente por $[T, \tau, \theta, \Theta]$.

Para Chevallard (1999), temos um tipo de tarefa [T] que denota uma ação a ser realizada. Em seguida, será reconhecida a maneira como realizar ou fazer essa tarefa, ou seja, por meio das técnicas [τ]. Essas técnicas são justificadas por propriedades e explicações, denominadas tecnologia [θ]. Por fim, temos a teoria [Θ], que fundamenta as tecnologias utilizadas.

Chevallard (1999) estrutura as praxeologias – ou organizações praxeológicas – em dois blocos: o bloco prático-técnico e o tecnológico-teórico. O bloco prático-técnico [T, τ] está associado à práxis, ou seja, ao saber fazer. Já o bloco tecnológico-teórico [θ , θ] corresponde ao logos, relacionado à razão, isto é, ao saber. Nesse sentido, a organização praxeológica nos permite, neste trabalho, investigar a organização do saber matemático em jogo, bem como a praxeologia que é construída ao longo da aula analisada.

A OD oferece elementos para o estudo integral de uma obra, o que implica, inclusive, observar como as OM se estabelecem no decorrer do material analisado. Neste trabalho, no entanto, realizamos apenas o estudo da Organização Matemática.

Outro conceito da TAD que utilizamos neste estudo é o de objetos ostensivos e não ostensivos. Bosch e Chevallard (1999 *apud* Almouloud, 2007) destacam que os objetos ostensivos são dotados de uma certa materialidade e natureza sensível. Um exemplo disso é a representação gráfica de uma função e a lei de formação: elementos ostensivos que podem ser manipulados durante a realização da atividade matemática. Já os objetos não ostensivos existem institucionalmente, mas não são visíveis, ditos, escutados ou mostrados por conta própria. Eles necessitam dos objetos ostensivos para serem evocados. Um exemplo é o conceito de função, que só pode ser mobilizado com o auxílio de objetos ostensivos, como palavras, gráficos, frases ou discursos.

De acordo com Fonseca (2015, p. 156), um objeto ostensivo pode ter subclassificações, a saber:

- ostensivos materiais: uma caneta, um compasso, etc.;
- ostensivos gestuais: os gestos;
- ostensivos discursivos: as palavras, [...], o discurso;
- **ostensivos gráficos:** os esquemas, desenhos, grafismos; ostensivos escriturais: as escritas e os formalismos.

Com o objetivo de analisar tarefas matemáticas voltadas para o ensino de funções seno e cosseno, na perspectiva do mecanismo atencional cerebral *top-down* articulado à TAD, buscamos associar os objetos ostensivos e não ostensivos aos mecanismos atencionais *bottom*-

up e *top-down*. Essa articulação nos permitiu delinear e analisar tarefas matemáticas para o estudo das funções seno e cosseno.

Após essa breve explanação de um dos construtos teóricos que fundamentam este trabalho, é pertinente compreendermos os mecanismos atencionais *bottom-up* e *top-down*.

3 Neurociência Cognitiva e o mecanismo atencional

Ao buscar compreender os mecanismos atencionais, é pertinente entender alguns fundamentos da Neurociência Cognitiva (NC). A NC pode ser definida como o "uso de informações sobre o comportamento e o cérebro para compreender a cognição humana" (Eysenck; Keane, 2017, p. 2). Podemos destacar que o desenvolvimento da NC tem crescido de forma bastante significativa, o que tem gerado uma interação cada vez maior com a área da educação. Sternberg (2010) e Gazzaniga, Ivry e Mangun (2006) ratificam essa relação ao evidenciar a relevância da Neurociência para o campo cognitivo.

Assim, ao pensar em tarefas matemáticas para o estudo de funções seno e cosseno, é conveniente compreender de que forma a NC pode favorecer esse estudo. Para isso, ampliamos as pesquisas sobre NC para os mecanismos atencionais, a fim de entender de que maneira eles podem contribuir para a aprendizagem do objeto do saber matemático em jogo neste trabalho.

Quando pensamos no estudo de um objeto do saber, a atenção se configura como uma das bases da aprendizagem, pois ela é crucial para a formação de memórias ao longo prazo. De acordo com Gazzaniga, Ivry e Mangun (2006, p. 265), "a atenção é um mecanismo cerebral cognitivo que possibilita alguém processar informações, pensamentos ou ações relevantes, enquanto ignora outros irrelevantes ou dispersivos".

A atenção pode ser dividida em dois tipos: a atenção seletiva e a atenção concentrada. A primeira está relacionada à seleção de informações julgadas mais importantes, desconsiderando estímulos que possam causar distrações, por meio dos mecanismos cerebrais (Gazzaniga; Ivry; Mangun, 2006). Um exemplo disso ocorre quando estamos em meio a uma multidão e precisamos encontrar um alvo específico, como um filho. Nesse caso, há uma sensibilização da sua atenção para as características do filho (cor da roupa, estatura, cabelo, etc.), o que permite localizá-lo rapidamente, mesmo no meio da multidão.

Já a atenção concentrada é aquela que devemos mobilizar durante o processo de aprendizagem. Nesse tipo de atenção, as atividades neurais são intensificadas, especialmente na percepção e compreensão dos sistemas de linguagem (Matlin, 2004). Assim, a atenção concentrada é mobilizada quando focamos em um alvo e tentamos compreender/decodificar os

seus significados.

Destarte, a operacionalização da atenção possui dois processos: o *bottom-up* e o *top-down*. O *bottom-up* é guiado pelo estímulo para focar o alvo, e o processo *top-down* utiliza expectativas e conhecimentos prévios para persuadir a nossa percepção e induzir o foco da atenção, ou seja, não depende fortemente dos estímulos sensoriais.

A fim de analisar tarefas matemáticas para o ensino de funções seno e cosseno na perspectiva do mecanismo atencional cerebral *top-down*, articulado à TAD, delineamos tarefas matemáticas por meio dos mecanismos atencionais *top-down*, associando-os aos objetos ostensivos e não ostensivos. Como o processo *bottom-up* depende de estímulos ou pistas que estejam presentes no meio externo ao cérebro, podemos relacioná-lo aos objetos ostensivos evocados na TAD (Chevallard, 1999). Já o *top-down* está associado à atividade cognitiva, com o intuito de traçar metas para uma orientação desejável (Pashler; Johnston; Ruthruff, 2001). Sendo assim, podemos inferir que o *top-down* se associa aos objetos não ostensivos.

O cérebro trabalha as funções neurais com o intuito de garantir a sobrevivência do organismo. Nesse contexto, a sensação de alegria – associada ao prazer e ao bem-estar – não acontece de forma rápida e imediata. A amígdala, sendo uma subestrutura do sistema límbico, tem o objetivo de gerenciar e controlar, a parte significativa do tempo, o comportamento de luta ou fuga, trabalhando, assim, com emoções não tão prazerosas (Fonseca; Campos; Oliveira, 2021).

Desse modo, ao se deparar com um tipo de tarefa matemática – como T_1 : Esboçar os gráficos das funções seno e cosseno –, o estudante ativará os circuitos neurais e surgirão os seguintes questionamentos na região amigdalítica: É necessário gastar energia com essa tarefa? Isso ajudará na minha existência? A ausência de uma recompensa atrapalha a formação de Memória ao Longo Prazo (MLP), pois há a necessidade de funções como emoção, atenção, sensações, entre outras.

Sternberg (2010) destaca que o lapso pode ser responsável por alguns erros na resolução de tarefas, em virtude da falta de foco, que impede a evocação de objetos não ostensivos, bem como de elementos para a solução. Isso ocorre devido à ausência de emoções positivas no sistema límbico, que não consegue desenvolver caminhos mais curtos para ativar o mecanismo top-down.

Para que a tarefa do tipo T_1 seja convocada pelo cérebro, ela deve apresentar elementos que indiquem recompensas imediatas. Fonseca (2015) propõe um modelo para a análise de princípios necessários à elaboração de tarefas envolvendo a trigonometria. Esse modelo busca

integrar elementos para a formação da MLP e estimular o mecanismo atencional *top-down*, conforme apresentado no Quadro 1.

Quadro 1: Requisitos para a elaboração de tipos de tarefas trigonométricas para ativar o mecanismo *top-down*

- (a) Exista estímulo sensorial potencialmente significativo;
- (b) Estímulos sensoriais devem ser estruturados e apresentados, considerando o desenvolvimento epistemológico das noções em jogo, que sinalizará o sentido necessário para ativar o sistema límbico do cérebro;
- (c) Existam conhecimentos prévios na MLP;
- (d) Exista a articulação entre registros geométricos e algébricos;
- (e) Exista a manipulação de objetos ostensivos escriturais algébrico-trigonométricos que provoquem o exercício das funções cognitivas, *flexibilidade cognitiva* e *atenção*;
- (f) Respeito às etapas para formação de MLP na constituição e seleção de tarefas.

Fonte: Fonseca (2015, p. 422-423).

A partir do modelo de Fonseca (2015), podemos inferir que, para ativar o mecanismo *top-down* nas tarefas, é importante considerar os elementos demonstrados no Quadro 1. Nesse sentido, apresentamos, a seguir, uma tarefa matemática sobre funções trigonométricas que contempla os seis requisitos para a ativação do *top-down*:

Tarefa t_1 : determinar os pontos máximo e mínimo da propagação sonora, durante o Carnaval de Salvador/BA, do trio elétrico em 2024, medida pela função f(x) = 1 + 2.sen 3x e observada pelo seu gráfico.

Observe, no Quadro 2, a análise da tarefa com base no mecanismo atencional top-down:

Quadro 2: Aplicação da análise dos requisitos em t1, para a elaboração de tipos de tarefas trigonométricas, visando ativar o mecanismo atencional *top-down*

Requisito/Quadro 1	Evidências em t ₁
(a)	✓ O som é um estímulo sensorial auditivo.
(b)	✓ A propagação de ondas sonoras impulsionou o estudo das funções seno e cosseno.
(c)	✓ Espera-se que o estudante tenha conhecimento da trigonometria no triângulo retângulo, bem como de funções seno e cosseno.
(d)	✓ Ao tentar esboçar o gráfico da função f(x) = 1 + 2.sen 3x perceberá a influência dos coeficientes da função para determinar os pontos de máximo e de mínimo.
(e)	✓ A fórmula de f(x) direciona os seguintes objetos ostensivos: a função é circular, espelha-se com a função f(x) = sen x, o esboço de seu gráfico lembra uma onda, chamada de senoide.
(f)	✓ De acordo com Kandel, Schwartz e Jessel (2000), para a formação de MLP, é necessário ativar a seguinte hierarquia neurocognitiva: sensação (o barulho do som do trio elétrico no carnaval de Salvador/BA); percepção (o sentido que se dá em nível regional e nacional da festa de Carnaval de Salvador/BA); emoção (alegria em estar na festa); memória de trabalho

(busca por analogias nas funções seno e cosseno); e atenção (decisão por focar na resolução da tarefa).

Fonte: Adaptado de Fonseca, Campos e Oliveira (2021).

Com base nessa análise, observou-se que a tarefa t_1 atendeu aos seis requisitos mínimos para ativação do mecanismo atencional *top-down*. A partir das considerações apresentadas no Quadro 2, compreendemos que a tarefa t_1 contemplou os requisitos necessários para ativar o mecanismo atencional *top-down* em sua resolução, por meio da hierarquia proposta no modelo.

A seguir, analisamos tarefas envolvendo as funções seno e cosseno, extraídas de um livro didático alinhado ao Novo Ensino Médio, a fim de compreender se as tarefas possibilitam a ativação do mecanismo atencional *top-down*, bem como identificar as praxeologias matemáticas mobilizadas em suas resoluções e os ostensivos e não ostensivos evocados.

4 Analisando tarefas de funções seno e cosseno por meio da TAD e dos mecanismos atencionais

As tarefas matemáticas analisadas pertencem à *Coleção Prisma Matemática*, organizada pela editora FTD, especificamente ao livro intitulado *Geometria e Trigonometria*, de Bonjorno, Giovanni Júnior e Sousa (2020). A escolha do livro em pauta ocorreu em virtude de ser uma das obras adotadas em algumas escolas públicas de Nível Médio em Feira de Santana e região (cidade onde a primeira autora desenvolveu sua pesquisa), além de ser utilizada por parte dos estudantes. Ademais, o livro já se encontra alinhado à Base Nacional Comum Curricular (BNCC) e às diretrizes do Novo Ensino Médio.

Ao analisar o Capítulo 4, *Funções Trigonométricas*, debruçamo-nos sobre as seções dedicadas à função seno e à função cosseno. Em seguida, levantamos a quantidade total de exercícios resolvidos e exercícios propostos em cada seção. Na função seno, identificamos um total de 15 exercícios, dos quais 3 são resolvidos de forma direta (sem contextualização) e 12 são destinados à resolução pelo estudante, sendo apenas 2 contextualizados.

Já na função cosseno, contabilizamos um total de 13 exercícios: sendo 2 resolvidos com contextualização e 11 exercícios-tarefas propostos para os estudantes resolverem, dos quais apenas 1 era contextualizado.

A seguir, analisaremos os exercícios contextualizados como tarefas matemáticas, a fim de compreender a sua organização matemática e verificar a mobilização dos requisitos mínimos para a ativação do mecanismo atencional *top-down*.

A primeira tarefa matemática analisada é apresentada na Figura 1:

Figura 1: Tarefa t₁ retirada do livro Prisma Matemática: Geometria e Trigonometria

. (FGV-SP) Um supermercado, que fica aberto 24 horas por dia, faz a contagem do número de clientes na loja a cada 3 horas. Com base nos dados observados, estima-se que o número de clientes possa ser calculado pela função trigonométrica $f(x) = 900 - 800 \cdot \text{sen}$ em que f(x) é o número de clientes e x, a hora da observação (x é um inteiro, tal que $0 \le x \le 24$). Utilizando essa função, a estimativa da diferença entre o número máximo e o número mínimo de clientes dentro do supermercado, em um dia completo, é igual a: alternativa e a) 600 d) 1500 b) 800 e) 1600 c) 900

Fonte: Bonjorno, Giovanni Júnior e Sousa (2020, p.133).

Esta tarefa é a t_1 : estipular a estimativa da diferença entre o número máximo e mínimo de clientes, por meio da lei de formação apresentada; do tipo T1: calcular a estimativa da diferença entre os valores máximos e mínimos de uma função. A técnica (τ_1) para resolução consiste em encontrar o valor mínimo e, em seguida, o valor máximo, por intermédio da lei de formação, e realizar a diferença entre os valores obtidos. Justifica-se pelo bloco tecnológico-teórico [θ , Θ]₁: função seno/funções trigonométricas. Observa-se que essa tarefa permite a mobilização de ostensivos gráficos, por meio símbolos e expressões algébricas, bem como o esboço de gráficos e registros escriturais. Além disso, infere-se a mobilização de não ostensivos relacionados ao domínio da função seno, cálculos algébricos, compreensão de ângulos e cálculos com π .

Ao analisar a tarefa t₁, por meio da grade que mobiliza os requisitos mínimos para ativação do mecanismo atencional *top-down*, estruturada por Fonseca (2015), podemos observar algumas evidências, apresentadas no Quadro 3:

Quadro 3: Aplicação da análise dos requisitos em t₁ para a elaboração de tipos de tarefas trigonométricas visando ativar o mecanismo atencional *top-down*

Requisito/Quadro 1	Evidências em t1	
(a)	✓ Para resolver essa tarefa, é necessário objetos <i>não ostensivos</i> por meio do mecanismo atencional <i>top-down</i> , no que se refere às restrições numéricas, pois $f(x)$, que representa o número de pessoas, é um valor inteiro, enquanto x representa o número de horas do dia, então é dado pelo intervalo $0 \le x \le 24$.	
(b)	 ✓ É necessário compreender as funções seno, o estudo do gráfico, o período, o domínio e a imagem para a resolução dessa tarefa. 	
(c)	✓ Para o esboço do gráfico da função da tarefa analisada, os coeficientes influenciam na determinação dos valores máximos e mínimos, considerando a periodicidade da função seno [-1, 1] e as transformações	

	gráficas apresentadas na lei de formação.
(d)	✓ Por meio da lei de formação de f(x), temos os seguintes objetos ostensivos: a função é periódica e circular, sua função básica é f(x)= sen x, seu gráfico é uma senoide e seu formato lembra uma onda.
(e)	✓ Há integração e articulação entre os diferentes registros de representações, a partir dos ostensivos presentes na tarefa.
(f)	✓ Está de acordo com Kandel, Schwartz e Jessel (2000). Para a formação de MLP, é necessário ativar a seguinte hierarquia neurocognitiva: sensação (estar no supermercado); percepção (é uma atividade comum e rotineira, porém não é perceptível enquanto uma tarefa matemática); emoção (alegria por estar nesse contexto); memória de trabalho (busca por analogias nas funções seno); e atenção (decisão por focar na resolução da tarefa).

Fonte: Adaptado de Fonseca, Campos e Oliveira (2021).

A outra tarefa analisada foi a t₂, conforme destacada na Figura 2:

Figura 2: Tarefa t₂ retirada do livro *Prisma Matemática: Geometria e Trigonometria*

l. (UFES) Considere que V(t), volume de ar nos pulmões de um ser humano adulto, em litro, varia de no mínimo 2 litros a no máximo 4 litros, sendo t a variável tempo, em segundo. Dentre as funções abaixo, a que melhor descreve V(t) é: alternativa e

a)
$$2 + 2 \operatorname{sen} \left(\frac{\pi}{3} t \right)$$

b) $4 + 2 \operatorname{sen} \left(\frac{\pi}{3} t \right)$
e) $3 + \operatorname{sen} \left(\frac{\pi}{3} t \right)$
c) $5 + 3 \operatorname{sen} \left(\frac{\pi}{3} t \right)$

Fonte: Bonjorno, Giovanni Júnior e Sousa (2020, p.133).

Esta tarefa é a t_2 : determinar a lei de formação V(t) por meio do valor máximo e mínimo que a função pode assumir; a técnica (τ_2) para a resolução baseia-se na informação que a função seno pode variar de -1 a 1. Assim, busca-se, por meio de uma incógnita, encontrar o valor máximo e mínimo, e a partir de um sistema linear encontrar os valores dessas incógnitas, construindo, então, a lei de formação. Essa abordagem é justificada pelo bloco tecnológico-teórico [θ , Θ]₁: função seno/propriedades da função seno/sistema linear/funções trigonométricas.

Essa tarefa mobiliza objetos não ostensivos relacionados aos valores máximo e mínimo, ao sistema linear, aos cálculos algébricos, à função seno e ao estudo dos parâmetros dessa função. No que se refere aos objetos ostensivos, há a mobilização de ostensivos gráficos, por meio de símbolos e expressões algébricas, bem como de registros escriturais.

Com base no mecanismo atencional *top-down*, estruturado por Fonseca (2015), apresentamos o Quadro 4:

Quadro 4: Aplicação da análise dos requisitos em t₂ para a elaboração de tipos de tarefas trigonométricas visando ativar o mecanismo atencional *top-down*

Requisito/Quadro 1	Evidências em t2	
(a)	✓ Quando nos referimos ao ar nos pulmões, imediatamente associamos à respiração, o que mobiliza o estímulo do olfato. Além disso, para resolver essa tarefa, é necessário utilizar objetos não ostensivos, por meio do mecanismo atencional top-down, no que se refere às restrições numéricas. Nesse contexto, o valor mínimo de V(t) é 2 e o máximo é 4. No entanto, sabemos que sen(π/3 t) tem o valor máximo 1 e o mínimo -1.	
(b)	✓ É necessário compreender as funções seno, o estudo do gráfico, o período, o domínio e a imagem para a resolução dessa tarefa. Além disso, é preciso mobilizar outros objetos matemáticos, como o sistema linear.	
(c)	✓ Para o esboço do gráfico da função da tarefa analisada, os coeficientes influenciam na determinação dos valores máximos e mínimos, considerando a periodicidade da função seno [-1, 1] e as transformações gráficas indicadas na lei de formação. Além disso, é necessário utilizar um sistema linear para encontrar os valores máximos e mínimos.	
(d)	✓ Por meio dos ostensivos presentes na tarefa, identificamos os seguintes objetos ostensivos: função periódica e circular, sua função básica é f(x)= sen x, seu gráfico é uma senoide e seu formato lembra uma onda, valor máximo e mínimo.	
(e)	 ✓ Há integração e articulação entre os diferentes registros de representações, a partir dos ostensivos presentes na tarefa. 	
(f)	✓ Está de acordo com Kandel, Schwartz e Jessel (2000). Para a formação de MLP, é necessário ativar a seguinte hierarquia neurocognitiva: sensação (encher o pulmão de ar); percepção (embora respirar seja uma atividade comum, ela não é percebida como uma tarefa matemática); emoção (alegria ao se colocar nesse contexto); memória de trabalho (busca por analogias nas funções seno); e atenção (decisão por focar na resolução da tarefa).	

Fonte: Elaborado pelos autores (2024).

Assim como na função seno, na seção referente à função cosseno, encontramos apenas três atividades contextualizadas. A atividade resolvida aborda o equilíbrio ecológico e inclui duas tarefas que estão relacionadas. Observe a Figura 3:

Figura 3: Tarefas t₃ e t₄ retiradas do livro Prisma Matemática: Geometria e Trigonometria

Em certas espécies em perfeito equilíbrio ecológico, a variação no tamanho de sua população é periódica. Esse período depende de condições ambientais, como a quantidade de predadores e a quantidade de alimento disponível, entre outros fatores. Em uma ilha, a população P de certa espécie animal é dada pela função: $P(t) = 500 + 100 \cdot \cos\left(\frac{\pi t}{3}\right)$, em que t corresponde aos meses do ano (t = 1 correspondendo a janeiro).

- a) Esboce o gráfico da função $y = 100 \cdot \cos\left(\frac{\pi t}{3}\right)$, determinando o período dessa função.
- b) Esboce o gráfico de P em função de t que representa a população dessa espécie animal e determine o intervalo de variação dessa população no ano.

Fonte: Bonjorno, Giovanni Júnior e Sousa (2020, p.137).

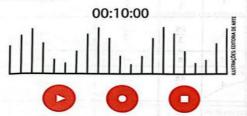
A primeira é a tarefa t₃: esboçar o gráfico da função $y = 100.\cos(\frac{\pi t}{3})$, determinando o período da função. A técnica para a resolução é τ_3 : construir uma tabela com alguns valores de t na função, observar que, a partir de um determinado ponto, os valores de y se repetem devido à periodicidade e, em seguida, esboçar o gráfico, obtendo o período 6. É justificado pelo bloco tecnológico-teórico $[\theta, \Theta]_2$: função cosseno/funções trigonométricas.

Já a segunda tarefa é a t_4 : esboçar o gráfico da função $P(t)=500 +100.\cos(\frac{\pi t}{3})$, determinando o intervalo de variação da população. A técnica utilizada para a resolução é t_4 : com base no gráfico anterior, transladar verticalmente 500 unidades para cima. Para determinar a variação, basta resolver a função para t igual a 3 e 6, obtendo os valores 400 e 600, respectivamente, de modo que a variação da função é Im = [400,600]. A técnica é justificada pelo bloco tecnológico-teórico $[\theta, \Theta]_2$: função cosseno/transformações gráficas/funções trigonométricas.

A seguir, apresentamos o Quadro 5, que corresponde à análise da tarefa baseada no mecanismo atencional *top-down*.

Quadro 5: Aplicação da análise dos requisitos em t_{3 e} t₄ para a elaboração de tipos de tarefas trigonométricas visando ativar o mecanismo atencional *top-down*

Requisito/Quadro 1	Evidências em t3 e t4
(a)	✓ Quando nos referimos ao equilíbrio ecológico, lembramos da fauna e da flora, o que mobiliza o estímulo da visão. Além disso, para resolver essa tarefa, é necessário utilizar objetos não ostensivos por meio do mecanismo atencional top-down, no que se refere ao esboço de um gráfico da função cosseno, às transformações gráficas, ao domínio e à imagem.
(b)	✓ É necessário compreender as funções cosseno, o estudo do gráfico, as transformações gráficas da função, o período, o domínio e a imagem para a resolução dessa tarefa.
(c)	✓ Para o esboço do gráfico da função da tarefa analisada, os coeficientes influenciam na determinação dos valores máximos e mínimos, considerando a periodicidade da função cosseno [-1, 1] e as transformações gráficas, como


	a translação vertical.
(d)	✓ Por meio dos ostensivos presentes na tarefa, temos os seguintes objetos ostensivos: função periódica e circular, sua função básica é f(x)= cos x, seu gráfico é uma senoide transladada e seu formato lembra uma onda, valor máximo e mínimo.
(e)	✓ Há integração e articulação entre os diferentes registros de representações, a partir dos ostensivos presentes na tarefa, como algébricos, aritméticos e geométricos.
(f)	✓ Está de acordo com Kandel, Schwartz e Jessel (2000). Para a formação de MLP, é necessário ativar a seguinte hierarquia neurocognitiva: sensação (observar os animais e o equilíbrio ecológico entre predador e alimento em uma ilha); percepção (observar a natureza é uma atividade comum, mas não é perceptível enquanto uma tarefa matemática); emoção (alegria ao se colocar nesse contexto); memória de trabalho (busca por analogias nas funções cosseno); e atenção (decisão por focar na resolução da tarefa).

Fonte: Elaborado pelos autores (2024).

A penúltima atividade analisada encontra-se esboçada na Figura 4:

Figura 4: Tarefa t₅ retirada do livro *Prisma Matemática: Geometria e Trigonometria*

.Um músico está aprendendo a tocar uma canção e decidiu gravá-la em seu celular, de 10 em 10 segundos, para saber em qual tempo deverá tocar as notas mais altas. A gravação registrou as ondas sonoras nos intervalos de tempo. A figura seguinte mostra o registro das ondas nos primeiros 10 segundos da canção:

Com auxílio de um aplicativo de geometria dinâmica, o músico encontrou uma função que **melhor** expressa as ondas registradas como $f(x) = \frac{\pi}{2} + \text{sen}(2x)$. Descubra em qual fração de segundo ele deve tocar a primeira nota mais alta. Considere $\pi \simeq 3,14$.

Fonte: Bonjorno, Giovanni Júnior e Sousa (2020, p.138).

Esta tarefa é a t_5 : determinar em qual fração de segundo o músico deverá tocar a primeira nota mais alta. A técnica (τ_5) utilizada para a resolução é analisar que as ondas sonoras são periódicas; portanto, as notas altas ocorrem em intervalos de tempo iguais. A nota mais alta corresponde ao valor máximo da função. Sabendo que $f(x)=\sin(2x)$ varia de [-1, 1], basta resolver a equação $\sin(2x)=1$ para encontrará o valor de x. Essa técnica é justificada pelo bloco tecnológico-teórico $[\theta,\Theta]_1$: função $\sin(\pi)$ 0 seno/funções trigonométricas.

No Quadro 6, apresentamos a análise da tarefa com base no mecanismo atencional *top-down*, estruturada por Fonseca (2015):

Quadro 6: Aplicação da análise dos requisitos em t₅ para a elaboração de tipos de tarefas trigonométricas visando ativar o mecanismo atencional *top-down*

Requisito/Quadro 1	Evidências em t5	
(a)	✓ O som é um estímulo sensorial auditivo. Para resolver essa tarefa, são necessários objetos não ostensivos.	
(b)	✓ É necessário compreender as funções seno, o estudo do gráfico, o período, o domínio e a imagem para a resolução dessa tarefa.	
(c)	✓ Para determinar a fração de segundo, é necessário determinar os valores máximos e mínimos, considerando a periodicidade da função seno [-1, 1] e isolar o x na lei de formação igualada a 1. Além disso, deverá, por meio de uma equação, encontrar o valor de x, o qual é a resposta esperada.	
(d)	✓ Por meio dos ostensivos presentes na tarefa, temos os seguintes objetos ostensivos: função periódica, sua função básica é f(x)= sen x, o seu gráfico é uma senoide e seu formato lembra uma onda, valor máximo e mínimo.	
(e)	 ✓ Há integração e articulação entre os diferentes registros de representações, a partir dos ostensivos presentes na tarefa. 	
(f)	✓ Está de acordo com Kandel, Schwartz e Jessel (2000). Para a formação de MLP, é necessário ativar a seguinte hierarquia neurocognitiva: sensação (o som da música); percepção (perceber as diferentes notas musicais e compreender a oscilação como algo comum, embora não perceptível enquanto uma tarefa matemática); emoção (alegria de se colocar nesse contexto); memória de trabalho (busca por analogias nas funções seno); e atenção (decisão por focar na resolução da tarefa).	

Fonte: Elaborado pelos autores (2024).

A última atividade apresentada no livro didático correspondia ao fenômeno das marés, conforme observa-se na Figura 5:

Figura 5: Tarefa t₆ retirada do livro *Prisma Matemática: Geometria e Trigonometria*

Um oceanógrafo registrou a altura das marés de uma praia, dia após dia, nos mesmos horários, e percebeu que há um padrão em que a maré alta atinge, no máximo, 3 m e a maré baixa sempre atinge 1 m em relação ao nível da superfície. A seguir estão as alturas e os horários marcados no primeiro dia de observação.

Horário	Altura da maré (m)
4:00	3
5:34	2
7:08	1
10:17	3
11:51	2
13:25	1
16:34	3

Com base nas informações fornecidas, faça o que se pede.

a) Sabendo que a função que se ajusta ao comportamento da maré é dada por A(t) = = cos(t − a) + b, em que A(t) é a altura da maré no tempo t, determine a e b, com a e b ∈ Z, de modo que, às 4:00, o valor da função se ajuste exatamente ao valor registrado pelo oceanógrafo. a = 4; b = 2

Fonte: Bonjorno, Giovanni Júnior e Sousa (2020, p.139).

Esta tarefa é a t₆: determinar os valores dos parâmetros da função a e b, em um determinado intervalo de tempo, de modo que coincidam com os valores apresentados pelo

oceanógrafo. A técnica (τ_6) para sua resolução consiste em analisar a altura máxima e realizar substituições, considerando o tempo t=4 e que o valor máximo é 1, logo encontra-se o valor de a=4. Assim, substitui-se na lei de formação para obter o valor de b=2. Essa técnica é justificada pelo bloco tecnológico-teórico [θ , Θ]₂: função cosseno/funções trigonométricas.

No Quadro 7, temos a análise da tarefa t₆ com base nos requisitos mínimos para a elaboração de tipos de tarefas trigonométricas, visando ativar o mecanismo atencional *top-down*, estruturada por Fonseca (2015):

Quadro 7: Aplicação da análise dos requisitos em t₆ para a elaboração de tipos de tarefas

trigonométricas visando ativar o mecanismo atencional top-down

Requisito/Quadro 1	Evidências em t6	
(a)	✓ A formação de imagens no córtex frontal é um estímulo sensorial relacionado a visão.	
(b)	✓ A altura das marés estimula o estudo da periodicidade, o que leva a compreender as funções cosseno, o estudo do gráfico, o período, o domínio e a imagem para a resolução dessa tarefa.	
(c)	✓ Para encontrar a resposta esperada, é necessário determinar os valores máximos e mínimos, considerando a periodicidade da função seno [-1, 1] e encontrar os parâmetros solicitados da função.	
(d)	✓ Por meio dos ostensivos presentes na tarefa, temos os seguintes objetos ostensivos: função periódica, sua função básica é f(x)= sen x, o seu gráfico é uma senoide transladada e seu formato lembra uma onda, valor máximo e mínimo.	
(e)	 ✓ Há integração e articulação entre os diferentes registros de representações, a partir dos ostensivos presentes na tarefa. 	
(f)	✓ Está de acordo com Kandel, Schwartz e Jessel (2000). Para a formação de MLP, é necessário ativar a seguinte hierarquia neurocognitiva: sensação (a imensidão do mar, a água salgada, a areia, o vento, o barulho das ondas durante a cheia das marés, a imagem do mar, o som da onda quebrando nas pedras durante a cheia da maré, e/ou vento no mar); percepção (a compreensão do sentido que se dá à maré subindo e vazando); emoção (alegria de estar inserido nesse contexto); memória de trabalho (busca por analogias nas funções cosseno); e atenção (decisão por focar na resolução da tarefa).	

Fonte: Elaborado pelos autores (2024).

Ao analisar tarefas matemáticas contextualizadas presentes no livro didático para o estudo de funções seno e cosseno na perspectiva do mecanismo atencional cerebral *top-down*, articulado à TAD, percebe-se o potencial dessas tarefas em mobilizar a atenção para favorecer a aprendizagem dos saberes matemáticos envolvidos. A possibilidade de desenvolver praxeologias matemáticas que evoquem diferentes ostensivos e não ostensivos para o estudo das funções seno e cosseno, aliada a mecanismos atencionais *top-down* focados na atenção, pode contribuir para a aprendizagem da Matemática, em especial, das funções seno e cosseno.

Além disso, destacam-se as potencialidades dessas tarefas matemáticas – apesar de serem poucas, porém significativas – para um maior aprofundamento dos estudos sobre as funções seno e cosseno.

5 Considerações finais

O presente trabalho buscou analisar tarefas matemáticas para o estudo de funções seno e cosseno na perspectiva do mecanismo atencional cerebral *top-down*, articulado à Teoria Antropológica do Didático (TAD). Para isso, analisamos tarefas matemáticas sobre funções seno e cosseno em um livro do Novo Ensino Médio, com o intuito de compreender se há a mobilização de mecanismos atencionais e quais as praxeologias matemáticas são evocadas na resolução dessas tarefas.

A fim de atender ao nosso objetivo, embasamo-nos na TAD como base para compreender a organização matemática das tarefas relacionadas às funções seno e cosseno, bem como para identificar os objetos ostensivos e não ostensivos evocados na resolução dessas tarefas. Além disso, fundamentamo-nos nos mecanismos atencionais *top-down*, para ativar a atenção e promover, por meio das tarefas trigonométricas, o despertar da sensação de recompensa imediata no cérebro, com o intuito de resolver as tarefas de forma consciente e com maior aproveitamento.

Assim, obtivemos como resultado que tarefas matemáticas baseadas nos requisitos mínimos de ativação do mecanismo atencional *top-down* podem contribuir para a apropriação de saberes – neste caso, das funções seno e cosseno – de forma efetiva, uma vez que atividades que mobilizam os estímulos sensoriais apresentam um melhor potencial de exploração. Destarte, ressaltamos a importância de valorizar, no processo de ensino e aprendizagem de Matemática, esses tipos de tarefas. Como perspectivas futuras, destacamos a ampliação da pesquisa, com foco no desenvolvimento e, posteriormente, na aplicação em sala de aula de tarefas matemáticas fundamentadas nos requisitos mínimos de ativação do mecanismo atencional *top-down*.

Referências

ALMOULOUD, S. A. Fundamentos da didática da matemática. Curitiba: Ed. UFPR, 2007.

BONJORNO, J. R.; GIOVANNI JÚNIOR, J. R.; SOUSA, P. R. **Prisma matemático:** Geometria e Trigonometria. 1. ed. São Paulo: Editora FTD, 2020.

CHEVALLARD, Y. L'analyse des pratiques enseignantes en théorie anthropologique du didactique.

Recherches en Didactique des Mathématiques, v. 9, n. 2, p. 221-266, 1999.

CHEVALLARD, Y. Approche anthropologique du rapport au savoir et didactique des mathematiques. In: **3ES Journées D'étude Franco-Québécoises**, 2002. Université René-Descartes, 2002. Disponível em: http://yves.chevallard.free.fr/spip/spip/article.php3?id article=62. Acesso em: 12 fev. 2024.

COLONEZE, B. R. S. **Módulo de aprendizagem e treinamento de funções trigonométricas:** fazendo o uso da tecnologia para a efetiva aprendizagem de funções trigonométricas com aplicação em eletrônica. 2012. 142f. Dissertação (Mestrado em Ensino de Ciências e Matemática) — Centro Federal de Educação Tecnológica Celso Suckow da Fonseca. Rio de Janeiro. 2012.

COSTA, N. M. L. **Funções seno e cosseno:** uma sequência de ensino a partir dos contextos do "mundo experimental" e do computador. 1997. 250f. Dissertação (Mestrado em Ensino da Matemática) — Pontificia Universidade Católica de São Paulo. São Paulo. 1997.

EYSENCK, M. W.; KEANE, M. T. **Manual de psicologia cognitiva**. 7. ed. Porto Alegre: Artmed, 2017.

FONSECA, L. S. da. CAMPOS, M. A. OLIVEIRA, E. S. S. Delineando Tarefas de Funções Trigonométricas por meio do Mecanismo Atencional Top-Down. **Revista Eletrônica de Educação Matemática – Revemat**. Florianópolis, v. 16, n. 1, p. 01-22, 2021. Disponível em: https://periodicos.ufsc.br/index.php/revemat/article/view/82929. Acesso em: 12 fev. 2024.

FONSECA, L. S. da. **Aprendizagem em trigonometria:** obstáculos, sentidos e mobilizações. São Cristóvão: Editora UFS, 2010.

FONSECA, L. S. da. Um estudo sobre o Ensino de Funções Trigonométricas no Ensino Médio e no Ensino Superior no Brasil e França. 2015. 495f. Tese (Doutorado em Educação Matemática) — Universidade Anhanguera de São Paulo. São Paulo. 2015.

GAZZANIGA, M. S.; IVRY, R. B.; MANGUN, G. R. **Neurociência Cognitiva:** A biologia da mente. Porto Alegre: Artmed, 2006.

KANDEL, E; SCHWARTZ, J. H.; JESSEL, T. M. **Principles of Neural Science.** Nova York: McGraw-Hill, 2000.

MATLIN, M. W. **Psicologia Cognitiva**. 5. ed. Rio de Janeiro: LTC Livros Técnicos e Científicos, Editora S.A., 2004.

OLIVEIRA, E. S. de S. **Estudo das funções seno e cosseno por meio de um modelo didático alternativo integrado ao GeoGebra**. Tese (Doutorado em Ensino, Filosofia e História das Ciências) – Universidade Federal da Bahia e Convênio com a Universidade Estadual de Feira de Santana. Salvador. 2020. Disponível em: https://repositorio.ufba.br/handle/ri/33143. Acesso em: 22 mar. 2024.

PASHLER, H.; JOHNSTON, J.; RUTHRUFF, E. Attention and performance. **Ann. Rev. Psychol.** v. 52, n. 1, p. 629-651, 2001.

STERNBERG, R. J. Psicologia Cognitiva. São Paulo: Cengage Learing, 2010.