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ABSTRACT 

As emphasis on mathematical reasoning—defined as making and justifying conjectures —grows 

internationally, the need for studying classroom practices that balance the support of reasoning 

and discourse is also growing. This qualitative study reports teaching practices that supported 

students’ mathematical reasoning during a teaching experiment in a rural fifth grade classroom. 

Particularly, it focuses on the teacher’s reasoning and observed practices when planning, 

facilitating small group and whole class discussions, and the mathematical reasoning co-

constructed within such practices. Connecting verbal and symbolic generalizations, recursive and 

explicit generalizations, and purposefully sequencing responses and tasks in terms of 

sophistication and understandability are some of the discursive practices that emerged from the 

data as supports of mathematical reasoning. Audio and video recordings of classroom activities, 

teacher’s reflections, and observation notes were data sources. Implications for research and 

practice are discussed. 

Keywords: Discourse, algebraic thinking, discussions, elementary school. 

 

RESUMO 

 

À medida que a ênfase no raciocínio matemático - definido como fazer e justificar conjecturas - 

cresce internacionalmente, a necessidade de estudar práticas de sala de aula que equilibram o 

apoio ao raciocínio e ao discurso também está crescendo. Este estudo qualitativo relata práticas 

de ensino que apoiaram o raciocínio matemático dos alunos durante um experimento de ensino 

em uma sala de aula rural do quinto ano. Particularmente, ele foca no raciocínio do professor e 

nas práticas observadas ao planejar, facilitando discussões em pequenos grupos e em toda a 

turma, e o raciocínio matemático co-construído dentro de tais práticas. Conectar generalizações 

verbais e simbólicas, generalizações recursivas e explícitas, e propositadamente sequência 

respostas e tarefas em termos de sofisticação e possibilidade de compreensão, estão algumas das 

práticas discursivas que emergiram dos dados como suportes ao raciocínio matemático. 
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Gravações de áudio e vídeo de atividades em sala de aula, reflexões do professor e notas de 

observação foram fontes de dados. Implicações para pesquisa e prática são discutidas. 

 

Palavras-chave: Discurso, pensamento algébrico, discussões, ensino fundamental.   

 

 

1. Productive Discussions for Algebraic Thinking: Generalization and Justification Context 

Bergqvist and Lithner (2012) defined mathematical reasoning as “the line of thought that is 

adopted to produce assertions and reach conclusions when solving tasks” (p. 253). Mathematical 

reasoning may refer to the thinking processes, the product of those processes or both. The 

product may be the verbal or the written transcripts of students. From this definition, 

mathematical reasoning in this study refers to making and justifying generalizations about 

pattern finding tasks. Specifically, the mathematical reasoning focus is on the product of the 

thinking processes—students’ written and verbal generalizations and justifications. 

Mathematical generalizations in pattern finding activities, according to Lannin (2005), may be 

classified as recursive or explicit.  Recursive generalizations use the term-to-term change in the 

dependent variable to find unknowns.  Explicit generalizations relate the dependent and 

independent variables and enable calculation of outputs given n inputs without necessarily 

knowing the previous outputs. Sowder and Harel (1998) classified justifications as externally 

based schemes, empirical schemes and analytic schemes.  With externally based schemes, 

students do not show ownership of the justifications but instead refer to an external source, 

which may be a book or another person perceived as more knowledgeable. Empirical schemes 

show students’ ownership of the justifications but do not regard the generality of the context. 

Analytic justifications consider the generality of the mathematical task’s context.  

Increasingly, researchers and educators recommend that mathematical reasoning should be the 

core of any branch of mathematics education (e.g., Martin & Kasmer, 2010; Sowder & Harel, 

1998). Mathematical reasoning is also a focus of national standards for teaching mathematics 

(National Council of Teachers of Mathematics [NCTM], 2000; Common Core State Standards 

Initiative, 2011).  Creating opportunities for mathematical reasoning serves many purposes in 

mathematics education. It supports conceptual understanding and retention of students in 

advanced mathematics classes (Martin & Kasmer, 2010; Horn, 2008). Moreover, students’ 

understanding is dependent on opportunities to reason mathematically (Bergqvist & Lithner, 

2012).  Despite such importance, research has shown that most students have difficulties 

reasoning mathematically (Lannin, 2005; Ellis, 2007; Healy & Hoyles, 2009).  

 

“One of the most reliable findings from research on teaching and learning is that students learn 

what they are given opportunities to learn” (Hiebert, 2003, p. 10) since learning is “gaining 

access to a certain discourse” (Sfard, 2001, p. 160). Based on NCTM’s (1991) definition of 

discourse, teachers’ discursive practices include ways of representing ideas and the reasoning 

involved, ways of interacting with students, and values in particular interactional systems. There 

is ample research showing that, despite reform efforts that promote rich discussions whereby 

students use each other’s ideas as thinking tools to co-construct new understandings, univocal 

discourses in which teachers typically evaluate teacher-initiated responses are the norm (Cazden, 

2001; Good, 2010; Temple & Doerr, 2012). Furthermore, research in US classrooms shows that 

about 80% of classroom time is used up by teacher speech in univocal discourses (Wertsch & 
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Toma, 1995). In such discourses, students do not actively use peers’ ideas as thinking tools by 

evaluating the extent to which they are valid and/or connect to their own reasoning. “For teachers 

to use discourse effectively in mathematics instruction, they must understand what they are 

doing, how they are doing it, and how it influences learning” (Truxsaw, Gorgievski, & 

DeFranco; 2008, p.67). One can reasonably argue then that prevalence of univocal discourses is 

a reflection of impoverished knowledge about productive discursive practices, which results in 

difficulties in mathematical reasoning. Hence there is a need for research focus on discursive 

practices that support mathematical reasoning and teacher’s reasoning behind their practices 

(Bastable & Schifter, 2008). 

 

In response to this problem, (project name blocked) research team analysed elementary school 

students’ generalizations and justifications and noted that in one classroom, students’ 

mathematical reasoning progressed more easily relatively. As presented in table 1, the 

percentages of students using each class of generalization indicate that students tended to use 

explicit generalizations by the third day of our teaching experiment.  Students also progressed to 

using empirical and analytical justification schemes, with more students using the latter, as 

shown in Table 2. Since it is a challenge to support development of mathematical reasoning 

(Baxter & Williams, 2010; Sherin, 2002), and opportunities for students to reason 

mathematically are tied to discursive practices (Imm & Stylianou, 2012), the discursive practices 

in this particular classroom—which based on the research team’s experience seemed different 

from other classrooms—became the focus of the study. The following research question guided 

this focus: What are the discursive practices that supported students’ progress of mathematical 

reasoning during this teaching experiment? 

 

Table 1 

 Percentage of Different Generalizations Expressed by Fifth Grade Students 

 

Generalization 

strategy 

Day 1  Day 2 Day 3 

Recursive 69.6 30.7 8.9 

Explicit 30.4 69.3 91.2 

 

 

Table 2 

 Percentage of Different Justification Schemes Used by Fifth Grade Students 

 

Justification 

strategy 

Day 1 Day 2 Day 3 

Externally based 

schemes 

13.0 6.2 0 

Empirical schemes 39.1 43.8 8.7 

Analytical schemes 47.8 50.0 91.3 
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2. Conceptual Framework 

In this study, learning is viewed as an individual’s construction of knowledge through 

participation in communities that create opportunities for appropriating tools that may modify 

abilities and dispositions (Claxton, 2002; Sawyer & Greeno, 2009). This perspective calls for 

“analyses focused on coordination of actions of individuals with each other and with material 

and informational systems” (Anderson, Greeno, Reder & Simon, 2000, p.12). As may be noted, 

one methodological implication of this perspective is a focus not only on students’ mathematical 

understanding, but also on how teachers coordinate the classroom activities that mediate 

students’ understanding. Based on a review of literature, Stein, Engle, Smith and Hughes (2008) 

proposed five practices (anticipating, monitoring, purposeful selection, sequencing, and 

connecting student ideas)  that may afford coordination of students’ ideas with each other, and 

with mathematical ideas in ways that potentially support growth of mathematical understanding. 

The following practices, support productive discourse. 

 

Anticipating is the teacher expectation about students’ possible interpretation of the problem, 

representations, and solution strategies.  To monitor student responses, the teacher moves around 

the classroom to take note of student responses as they work on their tasks. A teacher should then 

purposefully select strategies, ideas, and representations for display during whole class 

discussion.  Selected responses should be sequenced purposefully during whole class discussions 

for optimal attainment of lesson objectives. Class discussions present a chance for teachers to 

guide students to connect ideas and strategies from their peers.  Skillful questioning and 

sequencing of tasks provide opportunities for connections.  

 

As stated earlier, these practices were discussed by different authors. Stein et al. (2008) 

integrated these practices, showing their dependence on each other, and discussed how they may 

support mathematical understanding using hypothetical classroom situations. Readers are 

encouraged to read Stein et al. (2008) for a more thorough discussion of these practices. The 

present study contributes to this framework and mathematics education by reporting how these 

practices, integrated as in this model, can be enacted in an elementary mathematics classroom 

and possible teachers’ reasoning in making the decisions regarding the practices.  This paper also 

gives evidence of how these five practices support mathematical reasoning (see Tables 1 & 2).  

 

3. Methodology 

3.1 Research Design 

This qualitative study reports findings from a teaching experiment. Teaching experiments draw 

from prior research to build on empirical results and are characterized by their goals (e.g., 

explore student reasoning), their interventionist nature and their use of combinations of data 

analysis techniques (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003; Steffe & Thompson, 

2000). This teaching experiment was conducted in a fifth grade classroom in a rural county in the 

South Eastern US. The goal was to explore students’ generalizations and justifications about 

patterning tasks. It was conducted over a period of 3 consecutive days. Each lesson took about 90 

minutes on each day. One of the researchers, referred to in this study as the teacher, replaced the 
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classroom teacher during the teaching experiment. A team of 6 researchers collected data during 

the lessons. After the first and second day of the teaching experiment, the research team met to 

discuss the critical events that supported student reasoning and how reasoning could have been 

supported further. Studying the teacher’s discursive practices was a post hoc after noting 

students’ progress in reasoning.  

 

3.2 Instructional Tasks and Data Analysis 

Students were seated in pairs and worked on trains table tasks adapted from Phillips, Gardella, 

Kelly and Stewart (1991) as in figure 1 and Table 3. All students’ written work was collected at 

the end of the lesson. A video camera or an audio recorder focused on each pair. Whole class 

activities were video recorded. All classroom activities were transcribed. The teacher read the 

transcripts and wrote reflection notes on what her reasoning behind classroom practices was. 

Line by line coding of the transcripts was conducted. Active verbs were used to describe 

activities in the line-by-line coding. When building themes from line-by-line coding and the 

teacher’s reflections, discursive tools from several frameworks were tried.  Stein et al.’s (2008) 

framework was preferred among other frameworks because it explained most of the data.  It 

should be noted that the teacher was not intentional about using Stein’s framework in her 

teaching, her practices just happened to align with the framework during data analysis. The five 

practices were the broad categories, which were a basis for the 50-minute open-ended interview 

with the teacher. Within each theme, classroom events were randomly selected, and the teacher 

was asked for her interpretation of those events and reasoning for her classroom practices. 

Interview transcripts were analysed using the broad categories as the descriptors of practice. Data 

within each broad category was analysed and narrow themes developed. Descriptors for the 

narrow themes were from the data. For example, connecting was a broad category from Stein et 

al.’s framework, whereas connecting recursive and explicit rules, and connecting ideas across 

tasks, were corresponding narrow categories that emerged from the data. This analysis showed 

both the conditions to (e.g., reasoning behind practice) and the outcomes of the practices (e.g., 

how the practice supported students’ understanding). The conditions and outcomes were 

analysed to provide a deeper understanding of the practices and to seek evidence that the 

practices co-constructed students’ reasoning.  
 

Square Tables Train  

Triangle Tables Train  

Hexagon Tables Train  

 

Figure 1.  Sample of Train Tasks Given to Students  
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Table 3 

Students’ Summary Worksheet 

 
 

Suppose I wanted to find the NUMBER OF CHAIRS for any polygon table trains. Can you find a 

pattern that will help you write a rule that works for any polygon? 

 

 Trains with 

Triangles 

Trains with 

squares 

Trains with 

Pentagons 

Trains with 

Hexagons 

Train with  

n-gons 

Rule 

 

     

Explanation 

 

 

     

General rule to 

find number of 

chairs for any 

shape train 

 

 

Explanation of 

the general 

rule for any 

shape train 

 

 

 

 
 

 

The study used different data sources and multiple coders. Given a set of data and a list of 

themes, another member of the research team coded the data and confirmed coding consistency. 

Since this was a directed doctoral study, at least 2 experts in the field of mathematical reasoning 

checked the coding scheme at each phase of the analysis. These practices built consistency and 

trustworthiness into the study (Creswell, 2007). 

 

4. Results 

Data analysis results showed that anticipating, monitoring, purposeful selection, purposeful 

sequencing and connecting were the teacher’s discursive practices that supported mathematical 

reasoning. These practices will be discussed in detail in the following sections. Episodes, which 

are excerpts from the data that were selected based on how clearly they represented the 

discursive practices, will be used in reporting the results. 
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4.1 Anticipating 

The teacher explained in her written reflection in that she had used the task before with students 

older than the fifth graders. From that experience, she noted that finding and justifying 

generalizations about the number of people who can sit around a train of triangle tables is more 

challenging because the patterns are not as visually explicit as with the rectangle and other 

tables. She explained in her written reflection: 

 

I have learned from the first teaching experiments that triangle tables are difficult 

for students to find an explicit rule so I like to start the pattern block tables with 

squares. Generally, students at all levels start with a recursive strategy. 

 

As such, she decided to give the students the square table task before giving them the triangle 

table task. Furthermore, she anticipated that some students’ reasoning would be based on the 

observed action as a table is added to the existing train to produce a longer train.  She also 

anticipated other students would reason by considering the varying or constant aspects from train 

to train. Additionally, the teacher anticipated that students could use strategies that she had not 

come across before. This thinking can be noted in the following interview excerpt: 

 

What I learned was that there are ways that people perceive the trains (task). 

Some people perceive the last action of building the trains and they forget about 

parts of the train that came before. Then there are those that focus on the whole 

train and the ends. Then there are those that focus on the middle and the two 

ends.  

 

Her previous experience with teaching the train tasks helped in anticipating what the students’ 

responses might be. What she anticipated influenced her planning stage as she made decisions on 

how to sequence the tasks for optimal reasoning by students. She also anticipated that the 

students might not have had a lot of experience with finding patterns. As such, she planned to 

spend considerable time to introduce pattern-finding activities and the language (e.g., building 

models, input/output tables, justification, and rules or generalizations) associated with such 

activities. 

 

4.2 Monitoring 

As students were working on the tasks in pairs, the teacher walked around the classroom to note 

students’ responses. This gave students a chance to ask clarifying questions about the tasks and 

for the teacher to ask probing questions to support and assess students’ reasoning as explained in 

this interview response 

 

I have a strategy where I walk around while the students are working in their 

small groups. I talk to them about what they are doing. There are several 

purposes why I do that. It is formative assessment. To see how far along in the 

reasoning they are or how quickly they are completing the task, or the different 

strategies they are using. 
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Monitoring was also observed in the classroom. During the second day of the teaching 

experiment, the teacher was monitoring as students worked on the triangle tables train.  She 

encouraged them to think of different ways of justifying their rules. 

 

Teacher: (to student 1 and 2) So, have you figured this out yet (how to justify t+2 = p as a rule 

for finding the number of people who can sit around a train of n triangle tables)? 

Pat: The two comes from the two more people. 

Taylor: From the two sides. 

Teacher: Which two sides? 

Taylor: Actually from the two sides of the triangle that you add to. 

Teacher: Okay, build a model and show me where those two are. 

Taylor: Well, when you have a three-triangle table and then you add another triangle to it.  

There are two extra sides. 

Teacher: Okay.  All right.  There’s another way of thinking about it, too. 

 

Monitoring created an opportunity for the teacher to note students’ reasoning and responses. 

Other questions aimed at challenging students to move beyond the recursive rules they expressed 

to developing explicit rules. Monitoring students’ responses also informed the teacher on how to 

effectively progress with the lesson. For example, while thinking aloud during the lesson on the 

square table task, the teacher stated, “I will wait until they build their models and then we will 

talk about the t-table or the input-output table.” Although she had planned to spend ample time 

discussing how to collect data into an input-output table, monitoring students’ responses 

redirected that plan. In her reflection, she explained, “I decided to abandon giving directions on 

building the t-table. Brenda and Dan already understood how to collect their data.” After noticing 

that some students already knew how to build input-output tables, it was observed that she 

briefly discussed the tables. This was done to make sure all other students in the classroom 

understood how to collect data using t-table and for the students to “learn how to collect data in a 

systematic manner.” 

 

4.3 Purposefully selecting responses  

To support understanding, responses for public display were purposefully selected. The teacher 

considered several factors. 

 

Then I want to pick out the surprising reasoning. I also want to give every child if 

I can, or every child who wants to, a voice in the large group discussion... They 

are very proud of what they developed. It does not matter how sophisticated or 

how unsophisticated… When this student used symbols to express her rule, I saw 

many recursive rules. And so in that case I would pick them (both recursive and 

symbolic) to go up… and then any different ways of expressing the 

generalizations. I would put those up (and say) oh you had another way. So I 

would want to say, look at all these different ways that we can do this (interview). 

 

This interview response shows that she purposefully selected a surprising response that she did 

not anticipate or a response that was not common in the classroom. She also explained that she 

selected responses to allow many students to present their ideas. Additionally, the teacher 



 

RIPEM, v. 8, n.1, 2018, pp. 60-80  68 
 

 

considered responses that were expressed differently to communicate to the students that the 

reasoning tasks could be approached using different strategies and expressed differently. 

 

4.4 Purposeful sequencing of responses 

Student responses that were selected were purposefully sequenced to optimize algebraic 

reasoning. During whole class discussions, she generally ordered presentation of students’ 

strategies from less to more efficient. For example, recursive rules were generally followed by 

explicit rules as she explained. This sequencing may be observed in this whole class discussion 

on day 1:  

 

King: I did my table (shows his t-table to the class on the document camera). And 

every time you add a table (square), you add two people because when you put a 

table to tables (add a table to the existing train), you can’t like this–you can’t put 

anybody right here (on the touching sides of the tables), so you can only put two here 

(pointing at the top of the model) and here (pointing at the bottom of the square table 

model). 

 

Teacher: So you can only add two people? 

 

King: Usually you can add four, one, two, three, four, (points at seats on a model of 

one square table) but you can only have six there when they are like that (indicates 

his model of two tables). 

 

Teacher: Okay. So we have got Brenda. Brenda, do you want to come up and share? 

 

Brenda: (Brenda puts her work on the document camera for the class to read) I did if 

you add one table, you add two chairs and then I did T, which is the tables, times 

two, plus two equals chairs. 

 

King explained his recursive rule, followed by Brenda, who had an explicit rule. Purposeful 

sequencing of responses was achieved by having whole class discussions in multiple phases. 

There were three main phases. Phase one discussions were after or when students built the 

models and collected data into the input/output tables. Phase two was after students explored 

patterns and were prompted to respond to questions that could be answered using recursive rules. 

Finally, whole class discussions were held after students were challenged to develop explicit 

rules by looking for a rule that could be used to find outputs for any input or for an input of 100. 

This practice created a context in which recursive rules were presented before explicit rules 

were. 

 

The teacher also considered the strategies and solutions that could be understood by most 

students to be presented first and those that could be relatively difficult to understand. For 

example, Samantha explained 

 

Samantha: If you figure out how many people can sit around 20 tables, and you add 

20– because 10 is 22 and if you add 20, that is 42, and if you add 20 to that, that’s 62 
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and that figures out how many people fit around 30… because if you just multiply 

(102 for 50 tables)  by two you are adding another two end chairs.   

 

Alex: You have many big words in there. 

 

Samantha was explaining that once you figure out the number of seats around 10 tables, you can 

be adding 20 seats every time 10 tables are added to the train. Most students reported that this 

strategy was difficult to understand and it was among the last presentations of the first day’s 

discussions about rules for finding number of people around a train of 100 square tables. In 

addition to sequencing student responses according to levels of sophistication, the teacher 

considered responses that were expressed differently or were contradictory to be presented one 

after the other. The teacher explained in the following interview excerpt that such sequencing 

created more opportunities to ask for justification of responses. According to the teacher, 

sequencing responses according to the levels of sophistication and according to the differences in 

the reasoning was purposefully done to include more strategies and solutions for public display 

while simultaneously staging the students to notice how the strategies and tasks were related to 

each other. This approach supported mathematical argumentation, conceptual understanding, and 

co-construction of ideas. 

 

Teacher: Well, you always hope that there are two different views or two different 

ways of thinking about the task. Half the class thought one way (202 people can sit 

around a train of 100 square tables) because they used one strategy to get the answer. 

The other half used another strategy (and found 220 as number of people who can sit 

around a train of 100 square tables)…. You accommodate the differences when you 

do large group instruction and when you have different ways of doing it. So you 

keep on stressing, does somebody have a different way of doing this, did somebody 

get a different answer? And you set it up so that you can say, ok, let us see if we can 

justify both of these answers, may be they are both correct but you (students) have to 

justify your answer (interview).  

 

4.5 Connecting 

The teacher explained that she attempted to help students make several connections. The 

connections she made included connecting responses across different tasks, connecting different 

students’ responses, and connecting justifications and generalizations.  

 

Connecting different student ideas. Whole class discussions at each critical phase of the tasks 

(modelling and data collection, generalizing recursive rules, generalising and justifying explicit 

rules) afforded students opportunities to connect their reasoning to other students’ reasoning. 

Similarly, the teacher constantly encouraged students to evaluate each other’s argument as in this 

instance: 

Brenda: Multiply the tables times two and then add two to find the number of chairs. 

 

Teacher: [to the whole class] Think about that (rule) one more time, does that work? 

Stan: Yeah. 
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Teacher: How do you know it works? 

 

King: Because T (input) times two every time is two less than C (output) and if you 

add two plus T it works. 

 

Teacher:  And Sam, what did you say? 

 

Sam: It does work. 

 

This is an instance of classroom interaction from the first day of the teaching experiment as 

students were working on task 1, in which the teacher encouraged students to reason as to why 

their classmates’ rules were valid or not. In this instance, Brenda presented a rule for finding 

number of seats available on a train of n square tables and the other students evaluated why that 

rule could be valid. It was observed that this approach encouraged students to incorporate other 

students’ strategies into their own. For example, after one student used a geometric 

representation to justify the rule 2n+2 = p for a train of square tables, most students incorporated 

that representation into their explanations. This encouraged the students to evaluate others’ ideas 

and connect peers’ arguments to their own reasoning. Another event on the second day was when 

students were justifying their rules. Becky explained that the rule n+2 = p was valid for a train of 

square tables because every time 2 tables were being put together, the train was losing 2 sides 

that were touching, which were previously available.  The following argumentation and thinking 

(classroom interaction during the first day) followed. This argumentation based on students’ 

perceptual schemes went on, bringing in new understandings. The teacher finally asked Benny, 

who had a different justification. He explained that the rule t+2=p holds because “the plus 2 

comes from the end sides of the table (train)” and the number of people is constantly equal to the 

number of tables in that pattern.  

 

Sam: … speaking of the way she said, you are not subtracting two, you are adding 

two. 

 

Teacher:   She said that you are (your rule is) not taking away, you are (it is) adding 

two to the number of blocks. 

 

Connecting ideas across tasks. Several attempts were made by the teacher to connect students’ 

reasoning across tasks. The instructional tasks were isomorphic and she asked questions that 

encouraged students to reflect on previously worked out tasks to reason about new tasks. For 

example, the teacher mentioned the square table trains while the students worked on triangle 

table trains, and one student said, “I don’t know where we got two hundred and twenty.  You 

would have to have a hundred and twenty tables—a hundred and ten.” This student reflected on 

his faulty reasoning about the number of people who can sit around a train of 100 square tables. 

With that reflection, he tried to figure out what the question would have been for his response to 

be correct. Similarly, the teacher probed the students to think about previous justifications as 

they worked on trains of hexagon tables. This probe was followed by Jane’s analytical thinking: 

 

Teacher: Remember on the first day when we did squares (task 1)? …(Use it) to 

think about the hexagons.  
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Jane: So, a hexagon has two sides, so it has two hundred on each side. And two 

hundred times two is four hundred plus the two on the ends is four hundred and two. 

 

The teacher explained that she attempted to connect ideas across tasks to position students to see 

the relationship between tasks and scaffold their understanding. She further explained that 

although with these tasks she supported students’ understanding by connecting to reasoning in 

isomorphic tasks, connecting to their other everyday activities might also scaffold students’ 

understanding. She said: 

 

Teacher: It is reminding them that perhaps there is a relationship between what we 

did yesterday and what we did today. That we are going to build trains of tables but 

with a different shape. So, it is kind of saying, what we did yesterday was important. 

Now today we are doing something like it only a little different….Now, it just so 

happened that the connection was from the previous day. You could have just as 

easily said, remember (what we did) two weeks ago (interview).  

 

Connecting recursive and explicit rules. The task set-up positioned students to make recursive 

rules first and then explicit rules (see figure 1).  As the teacher explained: 

 

Well, you want them to see the recursive rule first. And so in building the table 

they see the recursive rule. That is important. Also building the table, you hope, 

leads to focus them on both variables. It does not always happen, because they 

usually begin focusing on one variable, but you hope that eventually they will go 

to both. 

 

She set the tasks this way so that students could make both recursive and explicit rules. During 

the lesson, she encouraged the students to develop explicit rules by asking them to figure out 

how many people can sit around a train of 100 tables without using a brute force approach. 

Throughout the teaching experiment, she asked, “how would you figure out how many people 

could sit around 100 of these tables that were all joined together?  Without figuring out all the 

ones by adding two, what is a quick way of doing that?” (Class interaction on days 1, 2, and 3) 

   

Connecting responses to authorship. Class discussions showed that the teacher communicated 

to the students that they owned their strategies and solutions. One of the ways the teacher did this 

was by constantly using “your rule” or “your strategy” as opposed to “a” or “the” rule. She also 

empowered students to validate their knowledge through mathematical argumentation rather than 

looking up to her as the only authority as in this classroom interaction from first day.   

 

Logan: What is the (correct) answer? 

Teacher: Do you believe in your answer (202 for a train of 100 square tables)? 

Logan: Yeah. 

Teacher: You do?  This table thinks it is 220.  Could you prove to them that you are 

right and they are wrong?   

 

Consequently, the students showed ownership of their ideas by referring to the rules and 

justifications as either “my rule” or “our rule” or strategy. The teacher explained that  
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It is important for them to own their answer, to be proud of their answers, and to 

be confident in their answers. So rather than to say it is right or wrong, I wanted 

the children to be able to figure it out among themselves and then use probing 

questions to move them along (interview).  

 

Connecting the lesson to unanticipated student ideas. The teacher took up unanticipated ideas 

or questions to enhance students understanding. For example, Dan modified the set of tasks 

given by the teacher and asked how many people would sit around a train of 50 square tables 

(day 1). She posed Dan’s question to other students.  

 

Teacher: Dan had an interesting question that he posed to me.  He said, “Would two 

groups of 50 tables give you the same answer as one group of 100 tables?”   

 

Student: No.  Because there would be four extra.  Because if you had 50 going this 

way (a train of 50 tables) there’d be one and one (one seat on each end of the train). 

 

Dan: There would be two groups of 50.   

 

Student: It would be 204.  Thank you, Dan. 

 

The teacher explained that this was “the case where students’ ideas are sometimes much more 

powerful than the teacher’s. So it was even more important for me to depend on students who 

can put up an idea that all the others will adopt.”  Thus, highlighting powerful unanticipated 

ideas was important. 

 

Connecting verbal and symbolic rules. The teacher also made attempts to position students to 

connect verbal and symbolic rules. For example, when a student presented her symbolic rule in 

figure 2, the teacher asked: “So what would that look like in words?”  The student then explained 

her rule in words.  
 

 

 

Figure 2:  Rule for square tables.  

Connections between verbal and symbolic rules were made so that as many students as possible 

could understand the symbolic rules as the following interview response suggests.  

 

I knew that most children did not understand her (symbolic) notation. So I wanted 

her to interpret her notation in words for those students who had an explicit rule 

but would think their rule is different from hers when actually it was the same 

rule. 

 

Connecting reasoning to task’s context. When the students expressed their explicit rules, they 

were asked to explain how their rules related to the context of the problem. As an example, the 
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following class interaction was on the third day when a student expressed 4t + 2 = p as a rule for 

finding the number of people that can sit around a train of t hexagon tables. 

 

Teacher: Okay.  So do you know what the two is? 

 

Bea: The two end chairs. 

 

Teacher: Yeah?   

 

Bea: Like if they’re like this (models the two ends of the hexagon train). 

 

Teacher: Yeah, and where does the four come from? 

 

Bea: From– you have times two (seats) up here (at the top of the hexagon table 

model) and  times two (seats) down here (bottom of hexagon table model), so that’s 

four times… 

 

5. Summary and Discussion of Results 

The results of this study are summarized in Table 4. Although these results are specific to 

algebraic thinking in elementary classrooms, they are in concert with findings from Stein et al.’s 

(2008) literature review. Anticipating calls for content knowledge for teaching mathematical 

reasoning, which includes knowledge about reasoning tasks and the type of reasoning that such 

tasks can support (Stylianides & Ball, 2008).  Working out the tasks —especially with other 

teachers— and keeping a record of practice (e.g., student worksheets and records of classroom 

related scenarios) can broaden a range of anticipated strategies.  

 

Monitoring positions teachers to select responses purposefully rather than randomly choose 

presenters for whole group discussions. For equitable classrooms, selecting responses from many 

students and assessing patterns of selection over time is recommended. Monitoring patterns of 

selection may require teachers to keep a record of presenters for each day. Purposeful selection 

may contribute to building norms that reasoning tasks may be solved using multiple acceptable 

strategies —a practice that is key to fostering reasoning (Rathouz, 2009) which many teachers 

find challenging (Depaepe, De Corte & Verschaffel, 2007). In addition to sequencing selected 

responses from less sophisticated to more sophisticated, contradictory responses create 

opportunities for students to engage in justifications and refine their reasoning (Komatsu, 2010). 

Students who justify or evaluate such ideas are afforded mathematical expertise authority 

(Gerson & Bateman, 2010).  That is, when students have a sense of authority that comes by 

authoring or co-authoring an idea and authority that comes by evaluating or justifying ideas, their 

potential for mathematical understanding and mathematical autonomy is highly supported. Such 

mathematical autonomy may nurture progress from using external justification schemes to using 

contextual justifications. According to Greeno (2006), contextual justifications are a tool for 

transferring knowledge from one context to another. 

Sequencing can be a tool for connecting ideas and for conceptual understanding. Conceptual 

understanding can also be supported by making student ideas focal during whole class 

discussions (Piccolo, Harbaugh, Carter, Capraro & Capraro, 2008). Prior research reported that 



 

RIPEM, v. 8, n.1, 2018, pp. 60-80  74 
 

 

isomorphic tasks support reasoning because the structure of the tasks supports transfer of 

mathematical ideas (Richardson, Berenson & Staley, 2009). Connections can also be across tasks 

that are not necessarily isomorphic. This fosters an understanding that mathematical concepts are 

not distinct but connected, in that an understanding in one area might foster an application in 

another area. Connecting word and symbolic generalizations could improve students’ 

understanding of symbolic generalizations, which is a challenge to many students (Capraro & 

Jofrion, 2006).   

 
Table 4 

A summary of Discursive Practice for Supporting Algebraic Thinking 
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Broad	

category		

Subcategories	of	practices	for	supporting	algebraic	thinking	from	

these	study’s	data.	

Anticipating	 Anticipate	

1. Students’	tendency	to	make	recursive	rules.	
2. Limited	mathematical	language	pertinent	to	algebraic	

thinking.	
3. Patterns	that	can	be	easily	linked	to	their	geometric	

representations	to	be	easily	noticeable	and	justified.	
4. Multiple	strategies	including	a	focus	on	

· Varying	and	constant	aspects	of	patterns.		

· Number	of	seats	lost	by	joining	the	tables	into	a	train	
relative	to	number	of	seats	that	would	otherwise	be	
available	if	the	tables	were	disjoint.	

· Number	of	seats	at	the	top,	bottom,	and	ends	of	the	
train.	

· Number	of	seats	each	of	the	tables	on	the	train	is	

contributing.	

Monitoring	 Interact	with	the	students	during	small	group	discussion	to	
1. See	and	hear	their	thinking.	
2. Collect	data	to	inform	the	teacher	on	how	to	progress	with	

the	lesson.	
3. Identify	ideas	that	should	be	made	focal	during	whole	

group	discussion.	
4. Formatively	assess	students’	reasoning.	

Purposeful	
selection	

Criteria	for	selecting	responses	for	public	display	include	
1. Strategies	that	appear	different.	
2. Recursive	and	explicit	rules	with	different	sophistication	

levels.	
3. Surprising	responses.	
4. Different	students	to	make	participation	equitable.	
5. How	well	the	student	responses	connect	with	objectives.	

Purposeful	
sequencing	

Responses	may	be	purposefully	sequenced	by	
1. Having	multiple	small	group	and	whole	class	discussions	

in	one	lesson.	
2. Moving	from	less	sophisticated	strategies	(e.g.	recursive	

rules)	to	more	sophisticated	strategies	(e.g.,	explicit	
rules).	

3. Moving	from	less	to	more	accessible	ideas.	
Connecting	
responses	

Explicit	mathematical	connections	should	be	made	between	
1. Different	student	ideas.	
2. Ideas	across	different	mathematical	tasks.	
3. Recursive	and	explicit	mathematical	rules.	
4. Verbal	and	symbolic	rules.	
5. Responses	and	their	authorship.	
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Monitoring is essential in supporting students’ reasoning as students work independently or in 

small groups. In this study, the teacher discussed that it is a challenge to help students negotiate 

their mathematical meanings while they work in small groups. That is, although students are 

supposedly working as a group, they work independently and share or report their thinking to 

their partners. Further research may look into teaching practices that support students’ co-

construction of mathematical ideas while working in small groups. More studies on classroom 

Broad	

category		

Subcategories	of	practices	for	supporting	algebraic	thinking	from	

these	study’s	data.	

Anticipating	 Anticipate	

1. Students’	tendency	to	make	recursive	rules.	
2. Limited	mathematical	language	pertinent	to	algebraic	

thinking.	
3. Patterns	that	can	be	easily	linked	to	their	geometric	

representations	to	be	easily	noticeable	and	justified.	
4. Multiple	strategies	including	a	focus	on	

· Varying	and	constant	aspects	of	patterns.		

· Number	of	seats	lost	by	joining	the	tables	into	a	train	
relative	to	number	of	seats	that	would	otherwise	be	
available	if	the	tables	were	disjoint.	

· Number	of	seats	at	the	top,	bottom,	and	ends	of	the	
train.	

· Number	of	seats	each	of	the	tables	on	the	train	is	

contributing.	

Monitoring	 Interact	with	the	students	during	small	group	discussion	to	
1. See	and	hear	their	thinking.	
2. Collect	data	to	inform	the	teacher	on	how	to	progress	with	

the	lesson.	
3. Identify	ideas	that	should	be	made	focal	during	whole	

group	discussion.	
4. Formatively	assess	students’	reasoning.	

Purposeful	
selection	

Criteria	for	selecting	responses	for	public	display	include	
1. Strategies	that	appear	different.	
2. Recursive	and	explicit	rules	with	different	sophistication	

levels.	
3. Surprising	responses.	
4. Different	students	to	make	participation	equitable.	
5. How	well	the	student	responses	connect	with	objectives.	

Purposeful	
sequencing	

Responses	may	be	purposefully	sequenced	by	
1. Having	multiple	small	group	and	whole	class	discussions	

in	one	lesson.	
2. Moving	from	less	sophisticated	strategies	(e.g.	recursive	

rules)	to	more	sophisticated	strategies	(e.g.,	explicit	
rules).	

3. Moving	from	less	to	more	accessible	ideas.	
Connecting	
responses	

Explicit	mathematical	connections	should	be	made	between	
1. Different	student	ideas.	
2. Ideas	across	different	mathematical	tasks.	
3. Recursive	and	explicit	mathematical	rules.	
4. Verbal	and	symbolic	rules.	
5. Responses	and	their	authorship.	
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discourse should be conducted as classroom discourse is “pivotal to current reforms in 

mathematics education because discourse informs not only our understanding of students' 

thinking about mathematics, but also teachers' thinking about teaching mathematics” 

(Blanton, Berenson, & Norwood, 2001, p. 227). 

6. Implications 

Good’s (2010) review of the literature revealed the persistence of univocal discourse (Wertsch, 

1991) in math classrooms with the teacher communicating ideas and their meanings to students 

for students to accept those ideas as they are. The emergence of the NCTM’s Standards and 

Principles, and CCSSM’s practice standards is a reflection of how evidence has steadily 

supported reformed practices —a shift from univocal to dialogic discourse in which dialogue is a 

thinking device and meanings are co-constructed between teachers and students and between 

students. Truxaw and DeFranco’s (2008) analyses of middle school teaching urged our view of 

classroom discourse to move beyond merely considering the types but rather the quality in 

relation to how it supports student learning; arguing univocal and dialogic discourse are on a 

continuum and both serve essential roles in the classrooms. While we agree with Truxaw and 

DeFranco, we believe high-quality dialogic discourse is at the heart of the nature and 

maintenance of cognitive demands of generalisation and justification tasks. The intersection of 

the persistence of univocal discourse over time and space, and the affordances of discursive 

practices that emerged in this study present a fertile field to ask: How can teacher education and 

development support a shift towards productive discourse? 

A few studies have explored this question. Blanton (2002) found that learning 

experiences in math content courses are opportunities for teachers to reflect on discourse and 

frame the desired discursive practices for their future classrooms. When prospective teachers 

experience high-quality dialogic discourse, they are likely to normalize such discourse and 

embrace reformed teaching practices that support generalisations and justification mathematical 

practices. Drawing from Ball and Forzani (2009), perhaps another obvious approach is for 

teacher education to foster more intentional teaching practice of high-quality dialogic discourse. 

From many studies on mathematics professional development (e.g., Garet, Porter, Desimone, et 

al., 2009), analysing teaching videos to notice high-quality discourse would also be productive. 

Further, Marrongelle, Sztajn, and Smith (2013) insisted that “we need studies that open the black 

box of PD and provide rich descriptions of the nature of the work in which teachers engage that 

does or does not lead to improved knowledge, beliefs, or habits of practice” (p.209). 

  

7. Essence of this study 

 

As discussed in the methodology section, the teaching experiment was not designed to be a 

confirmatory study for the Stein’s framework. The choice of the framework was a post hoc and 

naturally emerged from line by line coding as the framework that explained most of the data. 

Since the Stein et al.’s (2008) framework was used theoretical class scenarios and did not study 

all these practices as connected pieces, although the data analysis framework was a post hoc, this 

study confirms how productive the discursive practices are. Additionally, the Stein et al.’s 

framework is very general, it does not fully provide frameworks for different mathematical 

domains. To draw richly on the affordance of dialogic discourse, teachers and teacher educators 

need practical frameworks, and these will naturally be different between mathematical domains. 
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For example, good teaching practices realise the productive connections when teaching the 

Pythagorean Theorem will be different from those of a statistics unit on Sampling or Algebraic 

Thinking. This study contributes to Stein’s framework by providing a mini and practical 

framework for algebraic thinking.  
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