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Abstract: This article presents results that answer the research question: What aspects of 

Computational Thinking development emerge from the practice of modeling in Mathematics 

Education from the perspective of Meaningful Learning Theory? Grounded Theory was used 

to generate and analyze data obtained from 4th and 5th grade elementary school lessons at a 

municipal educational institution in Cascavel-PR. The resulting theory led to five concepts that 

explain the relationships between Meaningful Learning and Computational Thinking 

development skills in practices involving Mathematical Modeling, which were developed in 

interaction with the principles of Meaningful Learning Theory. This highlighted the centrality 

of Abstraction and the need for pedagogical practices that mobilize it when it comes to 

developing these processes, with Mathematical Modeling being a viable avenue for this 

purpose. 

Keywords: Grounded Theory. Computational Thinking. Mathematical Modeling. Meaningful 

Learning Theory. 

Pensamiento Computacional en Prácticas de Modelado Matemático desde 

la Perspectiva de la Teoría del Aprendizaje Significativo 

Resumen: Este artículo presenta resultados que dan respuesta a la pregunta de investigación: 

¿Qué aspectos del desarrollo del Pensamiento Computacional emergen de las prácticas con 

Modelado en Educación Matemática desde la perspectiva de la Teoría del Aprendizaje 

Significativo? Se adoptó la Teoría Fundamentada para la producción y análisis de datos 

resultantes de clases desarrolladas en los cursos de 4º y 5º año de la Enseñanza Fundamental de 

una institución educativa de la Red Municipal de Cascavel-PR. La teoría emergente resultó en 

cinco conceptos que explican las relaciones entre el Aprendizaje Significativo y las habilidades 

para el desarrollo del Pensamiento Computacional en prácticas con Modelado Matemático 

desarrollado en interacción con los principios de la Teoría del Aprendizaje Significativo, 

destacando la centralidad de la Abstracción y la necesidad de acciones pedagógicas. Prácticas 

que la movilicen, cuando el objetivo sea desarrollar estos procesos, siendo la Modelación 

Matemática un camino viable para tal fin. 

Palabras clave: Teoría Fundamentada. Pensamiento Computacional. Modelado Matemático. 

Teoría del Aprendizaje Significativo. 
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Pensamento Computacional em Práticas de Modelagem Matemática na 

Perspectiva da Teoria da Aprendizagem Significativa 

Resumo: Este artigo expõe resultados que respondem à indagação de pesquisa: Que aspectos 

do desenvolvimento do Pensamento Computacional emergem de práticas com Modelagem na 

Educação Matemática na perspectiva da Teoria da Aprendizagem Significativa? A Grounded 

Theory foi assumida para a produção e análise dos dados decorrentes de aulas desenvolvidas 

em turmas de 4º e 5º ano do Ensino Fundamental I de uma instituição pública de Cascavel-PR. 

A teoria emergente resultou em cinco conceitos que explicitam as relações entre a 

Aprendizagem Significativa e as habilidades para o desenvolvimento do Pensamento 

Computacional em práticas com Modelagem Matemática desenvolvidas na interação com os 

princípios da Teoria da Aprendizagem Significativa, evidenciando a centralidade da Abstração 

e a demanda de práticas pedagógicas que a mobilizem, quando o objetivo é o de desenvolver 

habilidades para o Pensamento Computacional e facilitar a Aprendizagem Significativa, sendo 

a Modelagem Matemática um caminho viável para esse fim. 

Palavras-chave: Grounded Theory. Pensamento Computacional. Modelagem Matemática. 

Teoria da Aprendizagem Significativa. 

1 Introduction 

Among the challenges of including Computational Thinking (CT) in education, 

particularly in Mathematics Education (ME) is the need to clarify its relationship with other 

areas of knowledge and to choose pedagogical practices that favor its inclusion from this 

perspective (Navarro & Sousa, 2023; Valente, 2016; Vieira, Santana, & Raabe, 2017). 

Based on a study of CT implementation in education reported by Kaminski, Klüber, and 

Boscarioli (2021) and a literature review, we identified the need for a theoretical-

methodological framework to support CT development with other areas of knowledge. Based 

on these results, we propose the integration of CT, Mathematical Modeling (MM) in 

Mathematics Education, and the Theory of Meaningful Learning (TML) as a means to this end. 

This is not arbitrary; there is evidence that problem-solving principles are necessary for 

developing CT (Navarro & Sousa, 2023), and these principles are present in MM practices and 

TML (Burak & Aragão, 2012). 

With this understanding, pedagogical practices were planned and developed with 4th 

and 5th grade students from a public school in Cascavel-PR during the year 2022. This field 

research, approved by the Human Research Ethics Committee of the State University of 

Western Paraná (Unioeste), under Opinion n.º 3.490.463 dated August 7, 2019, allowed us to 

theorize about the following question based on the students' performance during the developed 

practices: what aspects of CT development emerge from practices with Modeling in 

Mathematics Education from the perspective of TML? 

In this article1, we briefly explain how we understand CT, MM, and Meaningful 

Learning, and present an analysis of the data produced from the perspective of Grounded 

Theory (GT) (Charmaz, 2009) and the emerging theory of data in light of the articulation of the 

three areas studied. 

 
 
1 This article is part of a doctoral thesis defended in the Postgraduate Program in Science Education and Mathematics Education 

(PPGECEM) at the State University of Western Paraná (Unioeste), organized in multipaper format, written by the first author, 

supervised by the second author, and co-supervised by the third author (Kaminski, 2023). 



 

 
 

 

 
Revista Internacional de Pesquisa em Educação Matemática 

 Brasília, v. 15, n. 3, p. 1-24, sep./dec. 2025 3 
International Journal for Research in Mathematics Education 

 

2 Computational Thinking, Mathematical Modeling, and Meaningful Learning 

CT is generally understood as the application of computing principles to problem 

solving in multiple areas (Wing, 2006). These principles involve mental processes that are 

subject to different interpretations regarding what is inherent to CT or unique to computing. 

Four processes are widely mentioned in the literature as being associated with CT: abstraction, 

decomposition, pattern recognition, and algorithms. 

Abstraction involves isolating the essential elements of a problem. Decomposition 

involves dividing the problem into parts to facilitate its resolution. Pattern recognition involves 

identifying similarities with problems that have already been solved. Algorithms involve 

creating a sequence of steps to solve the problem (Brackmann, 2017). 

Teaching these skills in education has been discussed in several countries and has 

received special attention in Brazil since the resolution that made computer science compulsory 

in schools was approved (Brasil, 2022). This resolution complements the learning rights of 

students in basic education, as defined in the National Common Core Curriculum (BNCC) 

(Brasil, 2018). While these documents provide examples of applying these skills, they do not 

discuss how to integrate them with other areas of knowledge. This is a relevant point since 

problem solving involves multiple areas. Given the complexity of the current reality in which 

digital technologies are embedded, teaching must consider these interrelationships and avoid 

fragmented approaches (Morin, 2005). 

Considering this, we investigated how the teaching methodology of MM can link the 

development of CT to mathematics. Based on the work of Burak and Aragão (2012), we 

incorporated MM into our dialogue with TML because understanding the learning process is 

essential for developing strategies that promote meaningful learning. 

According to David Ausubel, meaningful learning occurs when new information takes 

on meaning by interacting with the student's existing knowledge, modifying it and expanding 

the student's cognitive structure (Moreira, 2018). This alteration can occur in three ways: 

subordination, superordination, and combination (Ausubel, 2003). 

Based on this, we conclude that meaningful learning requires skills related to the 

development of CT. Subordinating new information to prior knowledge involves progressively 

differentiating meanings. Superordinating involves reorganizing and recombining these 

meanings (Ausubel, 2003). Both processes require abstracting information, decomposing and 

composing ideas and meanings, and identifying patterns. 

According to Moreira (2018), meaningful learning occurs through the three types of 

learning proposed by TML: representational (assigning meaning to symbols), conceptual 

(assigning meaning to symbols representing objects with common properties), and 

propositional (forming ideas from concepts). These processes require abstraction to assign 

meanings and pattern recognition to identify common properties. 

TML's principles highlight the relationship between meaningful learning and language. 

Language can favor or hinder meaningful learning, depending on how the learner interprets it 

(Masini, 2008). Language is essential to learning, and so is abstraction, given their close 

connection (Abbagnano, 1998). 

Meaningful learning involves mental processes aligned with the skills associated with 

CT, and it is important that students develop these skills to promote this type of learning. In 

mathematics, these skills can facilitate learning because, according to Navarro and Sousa 

(2023), they enhance mathematical thinking in problem solving. 
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It is up to professors to mediate the teaching process by seeking methodologies that 

mobilize mental processes favorable to meaningful learning. Among the possibilities discussed 

in the literature, problem-solving-based methodologies stand out because they promote this 

type of learning by requiring students to reorganize their prior knowledge (Costa, 2008; 

Assunção, Moreira, & Sahelices, 2018; Moura Junior & Alves, 2023; Puhl, Müller, & Lima, 

2020). 

Based on this principle, one might believe that CT alone is a sufficient problem-solving 

strategy to facilitate meaningful learning. However, CT is not characterized as a methodology 

for intentionally organizing teaching based on epistemological, psychological, and pedagogical 

assumptions. Furthermore, especially in Mathematics Education, it is necessary to intentionally 

employ problem-solving methodologies that stimulate the development of mathematical 

thinking (Navarro & Sousa, 2023, p. 86), which goes beyond the skills associated with CT. 

We agree that MM is consistent with the principles of meaningful learning, as argued 

by Burak and Aragão (2012), Moura Junior and Alves (2023), and Souza (2021), since it focuses 

on problem solving. Modeling practices have the potential to foster the interpretation, 

classification, ordering, analysis, and synthesis of data using different languages and 

abstractions. These are relevant actions when one wishes to develop CT skills (Navarro & 

Sousa, 2023). Thus, we understand that MM encourages students to use skills to develop CT 

while solving problems. 

At the same time, MM can facilitate meaningful learning of mathematics by enabling 

the development of content that emerges from problems. This allows students to understand the 

world through mathematics. The modeling stages favor this approach because they require 

students to study and research the problem, which may involve knowledge beyond mathematics 

itself (Burak & Aragão, 2012). Thus, there are convergences between MM and some principles 

of TML. MM is taken as a guiding axis for pedagogical practices that give students the 

opportunity to develop CT by exercising their skills in problem situations and mobilizing these 

skills to develop thinking and learn mathematical concepts in a meaningful way. 

From this perspective, MM can be characterized as a two-way street because it enables 

students to improve their mathematical thinking and enhance their CT development skills in a 

dialectical process. 

In this section, we present CT, MM, and TML together because they were analyzed in 

conjunction, not in isolation, in the research. Armed with these theoretical reflections, we 

conducted a field study to investigate which skills emerge from modeling practices developed 

from the aforementioned perspective, as detailed in the next section. 

3 The procedures of Grounded Theory: production and analysis 

Theoretical analyses using Grounded Theory (GT) methods are based on data collected 

from observations, interactions, and reflections in the study environment (Charmaz, 2009, p. 

19). 

Considering that GT is epistemologically aligned with the mode of data production and 

the tension between the triad that we constitute as the object of study (CT, MM, and TML), we 

adopted GT in our study. In other words, it is necessary to understand the actions of students 

participating in the classroom process. Therefore, the data emerges from situations that can 

occur in classes where modeling practices are developed from the Meaningful Learning 

perspective, opening up the possibility of theorizing themes that depend not only on theory but 

also on students' actions. 
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Field research took place from September to December 2022 with fourth and fifth grade 

classes from a school in the Municipal Network of Cascavel, Paraná, Brazil. Table 1 shows the 

organization of the classes and the age profile of the students, who represent all classes in these 

grade levels at the school. We chose classes from the final years of elementary school because 

the students demonstrate greater cognitive maturity and literacy skills, which facilitates data 

production and recording. 

Table 1: Classes participating in data production 

Class Period 
Number of 

students 

Age group 

Age Qty. 

4th grade Regular morning 26 

9 12 

10 11 

11 2 

13 1 

5th grade Regular morning 28 

10 20 

11 7 

13 1 

4th grade Regular afternoon 27 
9 22 

10 5 

5th grade Regular afternoon 27 

10 17 

11 9 

12 1 

Source: Research data. 

The practices took place during weekly computer classes, during regular school hours. 

This allowed the field research to be supported by the teaching practice itself within the 

"habitual" dynamics of the classes. It is important to note that we did not investigate the 

practices themselves, which were merely vehicles for producing research data in a non-

simulated context. To record the data for later GT-based analysis, the classes were video 

recorded, resulting in 32 hours and 40 minutes of footage, as shown in Table 2.  

Table 2: Number of classes and recording time per class 

Class Number of classes Class duration 
Total recording 

hours 

4th Grade – Class 1 12 40min 8h 

4th Grade – Class 2 13 40min 8h40min 

5th Grade – Class 1 12 40min 8h 

5th Grade – Class 2 12 40min 8h 

Total 49  32h40min 

Source: Research data. 

We imported these videos into the Atlas.ti2 software to organize the analysis through 

data coding and categorization without transcribing them, which was unnecessary for our 

grounded theory construction since transcription occurred throughout the recording and 

analysis process. 

In the next section, we present a brief description of the modeling practices developed. 

3.1 The Development of Modeling Practices for Data Production 

The practices were developed based on the five steps advocated by Burak and Aragão 

(2012, p. 89): "1) Choose a theme. 2) Do exploratory research. 3) Identify the problem(s). 4) 

 
 
2 The version of the software used was duly licensed for the Postgraduate Program in which the research was conducted. 
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Solve the problems. Develop content within the context of the theme. 5) Critically analyze the 

solution(s)." 

First, we chose a theme based on the students' interests. According to the authors, the 

professor should assist by providing input that contributes to the group's deliberation. To 

encourage the learners in this decision-making process, we asked them, "What problems exist 

in the school environment?" 

After this prompt, the students had one week to observe the school environment and 

record issues they considered problems, that is, difficult or uncomfortable situations. When they 

brought their records to the next class, we discussed the situations pointed out by each class. 

Then, we voted on the following themes: 1) "Toilet paper balls on the bathroom ceiling" and 2) 

"Neglected (ugly) garden." Two classes chose each theme, without interference from the 

research professor. 

Next, we moved on to the exploratory research stage for the selected topics. In both 

cases, the students searched the internet for information to better understand each topic. They 

highlighted what they considered important, such as the origin of toilet paper and ways to care 

for a garden. These issues were then discussed collectively to guide the exploratory research. 

The problem identification stage was based on the groups sharing the results of their 

exploratory research. Each group presented the information they found, and through this 

dialogue, the problems related to each topic were defined. For Topic 1, the problem was defined 

as, "How much paper and money is wasted with the balls thrown in the bathroom?" For Topic 

2, the problem was defined as, "How is the garden being cared for, and what can be improved?" 

These problems required data collection. For the first theme, the instrument constructed 

collectively was a table to record the number of "paper balls" thrown in each bathroom of the 

school over the course of a week. For the second theme, students interviewed the principal, 

coordinator, and professor responsible for the garden project to determine if someone was 

assigned to care for the school garden and identify the challenges involved. 

In the stage corresponding to problem solving and developing mathematical content 

within the context of the theme, we estimated the amount of paper wasted and the cost involved 

for periods beyond collection in the case of the "balls." To accomplish this, we conducted new 

research and developed graphs, tables, and calculations using a spreadsheet editor. After the 

groups discussed the different solutions they found for this estimate, they organized a campaign 

with posters and a collective video for the class. The campaign included guidelines on the 

consequences of paper waste and how to use this resource consciously. 

Regarding Theme 2, the main issue was maintaining garden irrigation. The students 

suggested building an automatic sprinkler system, which required researching the necessary 

equipment and developing the appropriate programming. An undergraduate in Computer 

Science supported the structural and electronic assembly of the equipment in Scientific 

Initiation, while the groups developed the programming with the researcher's mediation using 

the MBlock software. Details of this process are beyond the scope of this article but can be 

found in the thesis (Kaminski, 2023). 

3.2 The process and results of the analyses 

In GT, emerging theory is constructed simultaneously with the production and analysis 

of data (Charmaz, 2009). At the end of each class, the videos were imported into Atlas.ti. Using 

the software's "memos" tool, a memo was written to record the organization of the class, 

noteworthy situations (e.g., comments, interactions, and student questions), and the researcher's 
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initial interpretations, insights, and analytical notes regarding the data. According to Charmaz 

(2009), writing memos is a "fundamental intermediate step between data production and the 

writing of research reports [...] because it encourages data analysis from the beginning of the 

investigation" (p. 107). 

Next, we watched the videos and highlighted excerpts of episodes (moments during 

classes) in which situations occurred that revealed the need for or use of skills for developing 

CT in the students' attitudes during the modeling practice. 

We highlighted these excerpts or episodes using the "free quote" tool in Atlas.ti. After 

selecting an excerpt, we inserted a comment that highlighted the situation and the corresponding 

CT-related skill. Figure 1 illustrates an example of a free quote created for one of the classes. 

Figure 1: Example of free citations 

 

 Source: Research data. 

The software generates an identification code for each created citation. Figure 2 shows 

an example of one of these codes. The initial part (4:2) indicates that this is the second citation 

from primary document (video) number 4. The rest of the code (9:34–10:53) shows the start 

and end times of the video clip (primary document) number 4 that was used to create this 

citation. 

Figure 2: Example of free citation coding 

 

Source: Research data 

We arrived at 256 citations following this process. These are 256 episodes in which we 

could identify the skills for CT development that emerged at different stages and moments of 

the modeling practice based on the students' statements and actions. Based on these citations, 

we coded the highlighted episodes, considering the four main processes associated with CT. We 

assigned a code to "each word, line, or segment of data" (Charmaz, 2009, p. 72). This stage 

corresponds to the researcher's initial coding, as described by the author. 

Our codes were designed to highlight the CT development skills identified in the 
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situations highlighted in the free quotations. We considered the MM stage and the TML 

principles involved in the process. In the coding stage, we sought to articulate the elements 

studied in the sense of an emerging theory. We understand that these elements are not 

independent but occur as related processes in teaching practice. We emphasize that this process 

required significant analytical effort because the relationship between the elements was not 

"ready" in the text. This required a dialectical movement between the theoretical triad and the 

students' actions. Figure 3 exemplifies the code applied to the free quotation in Figure 1. 

Figure 3: Example of initial coding created for free citation 

 
Source: Research data. 

This code was developed based on an analysis of the students' discourse when 

suggesting relevant steps and themes for conducting the research. We identified two themes: 

Decomposition and Abstraction. The students revealed their understanding that knowing the 

subject is important since replanting flowers without knowledge of the subject could lead to 

their death. In other words, they recognized that repeating an action can produce a consistent 

outcome. Additionally, one student demonstrated algorithmic thinking by describing the 

sequence of steps as research, replant, and care. These skills were expressed in the dialogue 

between the teacher and students during the exploratory research stage of the modeling practice, 

when meanings were shared. This code highlights the CT development skills identified in the 

situation (decomposition, pattern recognition, abstraction, and algorithms), the TML principle 

involved in the process (sharing meanings), and the stage of the modeling practice in which it 

occurred (exploratory research). 

After applying this methodological analysis procedure to all the highlighted episodes, 

we arrived at 96 codes, some of which appeared in different free citations. After identifying the 

predominance of Abstraction in the initial coding, we moved on to axial coding. According to 

Charmaz (2009), the objectives of axial coding are "to classify, synthesize, and organize large 

amounts of data and regroup them in new ways after open coding" (p. 91). At this stage, we 

identified convergent aspects among the 96 codes, grouping those that recorded the same skills 

for CT development at different stages of the modeling practice and in interaction with different 

TML principles. 

For example, the code generated for the situation presented in Figure 3 became part of 

a group of codes identified in other episodes in which the skills of abstraction, decomposition, 

pattern recognition, and algorithms were also identified. This group was named "Abstraction 

with Decomposition, Pattern Recognition, and Algorithms" and encompasses three codes 
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referring to different episodes. Figure 4 illustrates the codes that comprise this group. The 

number in parentheses before a group's name indicates how many initial codes were inserted 

into it. The number in parentheses before each code indicates how many times it was used to 

code different episodes. This analysis was performed on all codes to regroup them according to 

the CT development skills they highlight. 

Figure 4: Example of coding grouping 

 
Source: Research data. 

Figure 5 shows the 18 groups of codes that constitute the initial categories generated 

from this regrouping in axial coding. Ten of these codes were included in two different groups. 

Based on these groups of codes, we performed focused coding, which allowed us to 

establish relationships between the generated categories, creating a guiding axis for the analysis 

and interpretation of the data around a recurring central element. We created networks by 

linking groups of codes related to each other based on a common element. 

Figure 5: Code groups (initial categories) created during axial coding 

 

 
Source: Research data. 

Figure 6 illustrates one of these networks. Three groups of codes were brought together, 

and direct and explicit relationships were identified between Abstraction (common to all), 

Decomposition, Pattern Recognition, and Algorithms. Implicit relationships were also 

identified with the skill of Algorithms. According to Brackmann (2017), this skill involves all 

the others. The network formed by the groups indicated by white rectangles is highlighted in 

gray and connected to the network by black arrows. The codes belonging to each group are 

connected to it by a dotted red line. 
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Figure 6: Example of a network formed by code groups 

 
Source: Research data. 

Repeating this process, ten networks were formed, bringing together the code groups, 

as illustrated in Figure 7. 

Figure 7: Networks formed from code groups 

 
Source: Research data. 

To further refine the categories of analysis and identify new relationships between 

established networks, we formed groups of networks with converging elements. These groups 

constituted our categories of analysis, as shown in Figure 8. 

Our categories of analysis were thus established around Abstraction, the most recurrent 

skill, to which the other categories and codes are related. The categories were named as follows: 

(i) Abstraction in relation to other skills for CT development, (ii) Abstraction in the context of 

language, (iii) Abstraction in the context of content, and (iv) Abstraction in relation to other 

mental processes. 
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Figure 8: Categories generated from network groups 

 

Source: Research data. 

Considering that, all categories are centered on Abstraction and are interrelated, in the 

following section we will present the grounded theory that emerged from the analysis process 

described here. 

4 The theory based on Computational Thinking and Mathematical Education through 

Mathematical Modeling from the perspective of Meaningful Learning 

As we have already stated, the process of theorizing about CT in MM practices from the 

TML perspective is centered on the process of abstraction. Therefore, the unifying principle of 

this theory is the abstraction that these practices enable. 

According to Abbagnano (1998, p. 13), abstraction "is the process of selecting 

something as an object of perception, attention, observation, consideration, research, or study 

and isolating it from other things with which it has any relationship." For this author, abstraction 

is not limited to separating the object from other elements but also involves paying specific 

attention to the isolated object. In this sense, it becomes clear that "abstraction is inherent in 

any cognitive procedure and can serve to describe any process of this kind," as Abbagnano 

(1998, p. 13) points out. 

Mora (1994) defends a more comprehensive concept of abstraction, understanding it as 

objects of thought. He argues that when we abstract something, it is always part of a whole with 

which it is in a relationship. In this sense, the abstraction that emerged in the modeling practices 

is not isolated but occurs alongside the other processes involved in constructing knowledge. 

MM guided these practices, which were developed in interaction with the principles of TML 

and assumed as a methodology. The data revealed that abstraction is not only present in all 

processes involved in knowledge construction but also precedes them all. When other skills for 

CT development emerged in the episodes, they always occurred with Abstraction (Category 1), 

either implicitly or explicitly. 

For example, Figure 9 shows how abstraction emerged alongside Decomposition and 

Composition during the problem-raising stage of one practice in which the paper problem was 

raised. After data collection, students were asked to create graphs to represent the problem. 

During this process, each group used different strategies to represent the data, which were 

linked to how they abstracted and decomposed and recomposed it until they obtained the desired 

graph. 
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Figure 9: Example of episodes in which Abstraction emerges alongside Decomposition and Composition 

 

Source: Research data. 

The different graphic representations were discussed, and their meanings were 

interpreted. During this process of negotiating meaning, an exercise in abstraction was 

performed to interpret and explain the meaning of the interpretation. This interpretation was 

verbalized to classmates and broken down into steps. Figure 9 shows the codes used in excerpts 

from the episodes that highlight the students' use of different forms of abstraction. 

Situations in which abstraction was always present also occurred with the other CT 

development skills. Figure 10 shows situations in which abstraction emerges as part of pattern 

recognition during the problem-solving stage in the garden. At this stage, students began 

studying how to build the automatic sprinkler and had their first contact with MBlock, the 

platform chosen to develop the necessary algorithm for the sprinkler to work. 

In these episodes, students demonstrated their ability to establish relationships between 

prior knowledge and identify patterns to apply this knowledge to solving the current problem 

(new situation). These attempts may indicate a move towards meaningful learning (Moreira, 

2011). However, they needed to abstract information and focus their attention on aspects that 

would help them identify patterns. In other words, they had to abstract how this pattern could 

be used in the new situation by analogy. 
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Figure 10: Example of episodes in which Abstraction emerges alongside Pattern Recognition  

Source: Research data. 

Abstraction emerged alongside the Algorithms skill, as shown in the examples in Figure 

11. In these episodes, students abstracted different situations to think about the sequence of 

steps in the algorithm. 
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Figure 11: Example of episodes in which Abstraction emerges alongside Algorithms 

Source: Research data. 

In addition to highlighting the pairs formed by the skill of Abstraction with each of the 

other skills for CT development, as exemplified in Figures 9, 10, and 11, in various stages of 

the Modeling practice, the skills emerged together, as shown in Figure 12, which presents 

moments when Abstraction emerges with Decomposition, Pattern Recognition, and Algorithms. 
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Figure 12: Example of episodes in which Abstraction emerges with Decomposition, Pattern Recognition, and 

Algorithms 

 
Source: Research data. 

Our data corroborate and clarify Wing's (2008) assertion that "abstraction is the essence 

of computational thinking" (p. 3717). However, we note that current CT practices have placed 

a strong emphasis on algorithmic skills. Our analysis is based on empirical data that contribute 

to our understanding of the movement of abstraction throughout students' actions. 

The literature's emphasis on algorithms initially led us to believe that they would be the 

central skill in our categories. However, this hypothesis was not supported; Abstraction 

emerged as a prominent skill, setting a precedent and connecting with the others. Furthermore, 

we highlight the different meanings of abstraction in the context of CT systematically and with 

the emerging theory. 

Regarding decomposition, René Descartes (1596-1650), a leading figure in modern 

philosophy, highlighted its importance in the production of knowledge (Meneghetti & Bicudo, 

2003). However, we must abstract the aspects of a problem to break it down into smaller, more 

manageable parts. Abstraction makes it possible to visualize the parts of a problem separately 

and break it down. According to Abbagnano (1998, p. 14), "The limitations of our minds 

prevent us from understanding composite things except by considering them in their parts and 

contemplating the various faces they present. This is generally called knowing by abstraction." 

Thus, decomposition is encompassed by abstraction; the latter is a necessary process for the 

former. 

Regarding decomposition, we emphasize that although it contributes to solving some 

problems, the process of composing solutions for the parts is equally important, since they are 

complementary processes. Thus, it is important to help students decompose problems when 

appropriate but also to highlight the importance of composition for the solution so that the big 

picture is not lost, since we live in a world in which problems are embedded within a complex 

whole (Morin, 2005). 

Abstraction is involved in Pattern Recognition, since to identify a pattern, it is important 

to isolate each specific feature of a given situation and focus on it. Abstraction is also necessary 
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for the development of Algorithms (Wing, 2008; Brackmann, 2017). From the data produced, 

it was possible to conclude that, more than covering Decomposition and Pattern Recognition, 

the development of an Algorithm depends on these processes, which are supported by 

Abstraction. Thus, in addition to the step-by-step construction of the Algorithm itself being a 

process of Abstraction, it is present from the Decomposition of the problem and Pattern 

Recognition to the production of the Algorithm. 

Figure 13: Examples of episodes in which abstraction emerges in processes involving language 

 

Source: Research data. 

Abstraction, which is not unique to CT and emerged during practice as part of other 

processes, including in the context of language (Category 2, as shown in Figure 8), is essential 

for any teaching and learning practice, especially meaningful learning (Moreira, 2011). 

Language supported the development of modeling practices and was present, above all, in the 

negotiation of meanings, as recommended by TML (Moreira, 2011). In this process, abstraction 

emerged as fundamental since it is closely associated with language (Abbagnano, 1998). Figure 

13 presents examples of excerpts in which abstraction is integrated with language-related 

semantic awareness. 

In the context of language, abstraction is central to meaningful learning because 

students' understanding of subject matter is directly influenced by their meanings of words and 

situations. Thus, it is essential for teachers to promote the negotiation of meanings to capture 
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learners' developing meanings (Masini, 2008). This negotiation helps teachers mediate the 

process. 

As illustrated in Figure 14, students' language difficulties emerged during the practices 

when we perceived, through the negotiation of meanings, the limitations of their understanding 

of what was proposed and made possible by the dialogue resulting from the modeling 

methodology. 

Figure 14: Examples of episodes involving difficulties in abstraction in language 

 
Source: Research data. 

In Episode 21:6, the necessary abstraction to understand written language through 

reading, as well as the abstraction to transfer this understanding to verbal language to explain 

the studied watering can model, proved fragile. This hindered overall understanding. In Episode 

25:1, the students' misunderstanding of the table may be linked to their difficulty with language, 

the abstraction of the table's elements (rows and columns), and the relationship between them. 

This difficulty also extends to the implicit aspects of thinking necessary to understand tabular 

organization. In both cases, mediation through dialogue was necessary to clarify the ideas for 

the students. 

Given the mathematical content (Category 3) being worked on, the strong presence of 

abstraction is not surprising, as Mora (1994) and Abbagnano (1998) have stated; it is part of 

mathematical knowledge. During the development of the mathematical content necessary to 

solve the problems, the students required abstraction to develop the solutions. From this, the 

category "Abstraction in the Context of Content" was formed. These categories were formed 

from groups of networks. The network "Abstraction in the Context of Content" formed a 

category with the same name because no other networks were grouped with it. This network 

consists of groups of distinct codes related to Abstraction and the mathematical content 

explored in Modeling Practices. These groups of codes are Abstraction in the Development of 

Mathematical Content, Difficulties Involving Abstraction, and Use of Prior Knowledge 

Involving Abstraction. Figure 15 shows an example of one of the nodes, highlighting ways in 

which abstraction emerged in the context of this category. 
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Figure 15: Example of a node in the Abstraction Network in the context of content (Abstraction in the 

development of mathematical content) 

 
Source: Research data. 

Both the episodes in which abstraction emerged during the application of prior 

knowledge by students in the solution process and the content that they found difficult to 

develop in the context of the problem, related to abstraction, were part of the nodes of this 

network, as illustrated in Figure 16. 

Figure 16: Example of a node in the Abstraction Network in the context of content (Difficulties involving 

Abstraction) 

 
Source: Research data. 
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In addition to content, abstraction emerged in relation to other cognitive processes 

involved in solving problems (Category 4), such as analyzing and interpreting results and 

developing mental models, as shown in Figure 17. Abstraction is a part of developing mental 

models, analyzing and interpreting results, and refining them cognitive processes involved in 

meaningful learning (Costa, 2008). 

Figure 17: Example of a node belonging to the Abstraction network in relation to other mental processes 

 
Source: Research data. 

Although we presented excerpts from each category separately, this was only to 

facilitate the reader's understanding of the categories' components, which are not independent 

or isolated. Note that abstraction was present in all the processes that make up each category 

and in the relationships between them. Figure 18 summarizes these relationships. 

Figure 18: Relationships between categories centered on Abstraction 

 

Source: Elaborated by authors. 
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All categories are related to Category 2, "Abstraction in the Context of Language," 

because language is a social function formed and transformed throughout life. Language is 

involved in the organization of thought and depends on the entire cognitive process, cognitive 

development, and knowledge acquisition (Moreira, 2011). 

Any cognitive process, such as the mobilization of skills for CT development, 

interpretation, analysis, or other elements mentioned in Category 4, as well as content 

development, is directly related to language. These processes depend on attributing meanings 

that are not inherent to words but rather to people (Moreira, 2008). Abstraction, which is 

inherent to language, is directly linked to all categories. 

Category 1, "Abstraction in relation to other skills for CT development," is related to 

Category 3, "Abstraction in the context of content," because meaningful learning involves 

processes such as progressive differentiation and integrative reconciliation in different types of 

learning (representational, propositional, and combinatorial; Ausubel, 2003). These processes 

converge into skills such as decomposing and composing ideas, identifying patterns, and 

thinking algorithmically. These skills require abstraction. Therefore, skills for developing CT 

centered on abstraction are aspects that can facilitate meaningful learning. The processes 

involved in meaningful learning converge toward skills that enable CT development and can 

mobilize it. Therefore, the development of CT can contribute to meaningful learning, and 

meaningful learning can favor the development of CT by highlighting the need to evoke the 

skills necessary for its development. 

Category 1 is related to Category 4 – “Abstraction in relation to other mental processes,” 

given that the skills for the development of CT require other mental processes for problem 

solving, such as analysis, classification, interpretation, data ordering, synthesis, refinement of 

ideas, data and results, as well as the development of mental models, all of which are centered 

on Abstraction. Thus, the categories are interrelated so that the cognitive processes involved in 

each of them are related. 

In all stages of Modeling, Abstraction was required along with other skills for the 

development of CT that emerged in the processes of Meaningful Learning. Based on these data 

and our reflections on them, we can conclude that Abstraction is at the core of the development 

of CT and the processes of Meaningful Learning. Therefore, there is a reciprocal influence 

between the development of CT and TML in the learning processes mediated by Modeling. 

5 Summary of the theory 

Considering the characteristics of GT, we will not present final considerations but rather 

a summary of the theory. This summary will highlight the fundamental aspects that emerged 

from the analyses and explain the "concept" and its content. 

CT development skills, often referred to as CT skills, are not exclusive to CT. It is worth 

noting that abstraction and decomposition are inherent to the production of knowledge 

(Abbagnano, 1998; Meneghetti & Bicudo, 2003) and therefore as old as knowledge itself, 

predating computing (Fonseca Filho, 2007). Regarding Pattern Recognition, its concepts have 

long been used by humans, even at the level of common sense. For example, humans have used 

this skill in everyday situations, such as agriculture. It has also been used in medicine for 

diagnosis. Additionally, Pattern Recognition is related to Algebraic Thinking (Navarro & Sousa, 

2023) and has its roots in mathematics. The concept of algorithms also originates in 

mathematics and therefore predates computing. One example is the division algorithm proposed 

by Euclid, which Fonseca Filho (2007) considers "the beginning of the quest for the automation 

of reasoning and calculation" (p. 42). 
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These skills, used in the production of knowledge in other areas, have been incorporated 

by computing into its problem-solving and knowledge-building processes. Logically, this area 

has enabled significant contributions to scientific development. When it comes to these skills, 

computing has contributed most notably to the development and execution of algorithms 

through computing-specific languages, leading to important advances. 

For this reason, perhaps, working with algorithms has been emphasized in discussions 

about developing CT practices in schools. Current discussions on this topic originated from 

movements proposed by computer science researchers. The process of algorithmization is a 

significant contribution to CT because it can make problem solving feasible and fast by 

reducing repetitive and excessive efforts. However, it should be noted that this process depends 

on other skills; without them, achieving CT is impossible. 

Disregarding this historical movement and viewing these skills as exclusive to CT and 

computing can result in their inclusion in the classroom in an "empirical, technical, and 

utilitarian" manner (Navarro & Sousa, 2023, p. 106). We understand that these are skills for 

developing CT, not skills that are exclusive to CT. Like Navarro and Sousa (2023), we believe 

that these skills should be developed in the classroom to help students solve problems in various 

areas through various strategies that can lead to the development of algorithms. 

Centrality in Abstraction Processes: Among the investigated skills, abstraction emerged 

as the basis for the other processes involved in CT development. It is necessary for 

decomposition and composition, pattern recognition (especially thinking about what is not 

immediately given), and developing algorithms. This process requires the mobilization of all 

these skills, although it is secondary to the others. Based on the analytical efforts undertaken 

through GT, we conclude that these skills are interdependent and centered on abstraction. It is 

pertinent to address them with students from this same perspective rather than in isolation since, 

in the context of real problems, they are always interconnected. Therefore, promoting the 

development of CT in the classroom requires didactic-pedagogical actions that enable students 

to use abstraction to solve problems in different modes, levels, and contexts. 

Pedagogical practice supported by TML mobilizes abstraction and other skills for 

developing CT. With problem solving as one of its guiding principles, pedagogical practice 

supported by TML highlights the need to evoke skills centered on abstraction and other 

strategies and ways of thinking in the problem-solving process. Furthermore, when language is 

used to inform classroom actions, negotiation of meaning becomes a central element. This 

brings constant dialogue between learners and teachers, aiming to understand the meanings 

students attribute to the subject and verify if these meanings align with the subject. This allows 

for mediation that facilitates meaningful learning (Moreira, 2011). 

In this process, the abstraction inherent in language is constantly required and 

mobilized. Considering the principles of TML, practices that engage learners in mental 

processes such as analysis, synthesis, refining results, and developing mental models are 

valued. These processes are centered on abstraction. Thus, TML based pedagogical practice has 

the potential to mobilize abstraction in different modes, levels, and contexts. 

CT development skills converge with the processes of meaningful learning: CT 

development skills align with the cognitive processes necessary for meaningful learning. These 

processes include progressive differentiation, integrative reconciliation, decomposition, 

composition, and pattern recognition. Above all, they require the abstraction necessary for 

understanding content. However, this only occurs when the processes are not approached in a 

merely expository manner or as thinking techniques. 

These skills are involved in the cognitive processes of knowledge production and 
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converge with learning processes, especially meaningful learning. Therefore, promoting 

pedagogical practices that utilize these skills can facilitate meaningful learning. Similarly, it is 

important to promote practices that enable learners to develop the ability to abstract, since 

meaningful learning can be hindered by an absence of background knowledge related to this 

skill. 

MM, from the TML perspective, is configured as a methodology that articulates the 

development of CT and EM: MM aims to contribute to the critical formation of students. 

However, practices may not lead to the mobilization of thought processes that lead to this 

formation. In this sense, the theoretical contribution of TML is a differential; given that the 

principles of this theory, when understood and put into practice in the classroom, enhance 

Modeling practices in the sense of mobilizing actions by both teachers and learners, which are 

in fact the guiding thread for this critical formation. Among these actions, we highlight 

dialogue, reflection-action, research, analysis, argumentation, creativity, the application of what 

has been learned in new situations, and the learning of mathematical knowledge in contexts of 

problem solving that make sense to students. 

The development of CT can be favored in this process, since the modeling practices thus 

developed bring out the need to set in motion abstraction at its different levels, from the simplest 

to the most complex. At the same time, both abstraction and the other skills for CT development 

converge toward the cognitive processes of meaningful learning. Simultaneously with these 

practices, the mobilization of these skills can be another facilitator of meaningful learning in a 

process that requires students to progress in their learning of mathematical content and the 

development of CT in a process of mutual contribution. 

Therefore, we can conclude that mobilizing abstraction in different modes and contexts 

is central to facilitating the development of CT and the meaningful learning of content. In this 

process, MM is a methodology that interacts with the principles of TML and serves as a guiding 

thread. 

We emphasize that the present study was limited to one school, thus reflecting its 

specific context. Nevertheless, we believe it provides valuable insights that can inspire 

reflection in other contexts with the necessary adaptations. 

The data produced will allow for further analysis of the evidence of meaningful learning 

among students during MM practices, which will be carried out in future studies. 
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