Reflection on practice in teacher training: analysis of Pythagorean Theorem class simulations with Didactic Suitability Criteria
Palavras-chave:
Class Simulation, Pythagorean Theorem, Reflection on Practice, Didactic Suitability Criteria, Teacher TrainingResumo
This study explores the integration of class simulations and Didactic Suitability Criteria in the training of future mathematics teachers in Chile, aiming to foster reflective competence from the initial stages of their professional training. Using a qualitative approach, it investigated how future educators use the components of the Epistemic Didactic Suitability Criterion to reflect on and improve class simulations of the Pythagorean Theorem. Despite some confusion in the application of the criterion, all groups demonstrated an active commitment to didactic improvement. This combined approach of class simulations and Didactic Suitability Criteria is revealed as a valuable strategy in initial training, providing meaningful practical experiences and promoting structured reflection on pedagogical practice.
Downloads
Referências
Aghakhani, S., Lewitzky, R. A., & Majeed, A. (2023). Developing reflective practice among teachers of mathematics. International Electronic Journal of Mathematics Education, 18(4), 1-10.
Bradley, E. G. & Kendall, B. (2014). A Review of Computer Simulations in Teacher Education. Journal of Educational Technology Systems, 43(1), 3-12.
Breda, A., Font, V. & Pino-Fan, L. (2018). Evaluative and normative criteria in Didactics of Mathematics: the case of didactical suitability construct. Bolema, 32(60), 255-278.
Breda, A., Pino-Fan, L. R. & Font, V. (2017). Meta Didactic-Mathematical Knowledge of Teachers: Criteria for The Reflection and Assessment on Teaching Practice. Eurasia Journal of Mathematics, Science and Technology Education, 13(6), 1893-1918.
Cáceres, P. (2003). Análisis cualitativo de contenido: una alternativa metodológica alcanzable. Psicoperspectivas. Individuo y sociedad, 2(1), 53-82.
Corbin, J. & Strauss, A. (2014). Basics of qualitative research: Techniques and procedures for developing grounded theory. Thousand Oaks, CA: Sage publications.
Davis, B. (2008). Is 1 a prime number? Developing teacher knowledge through concept study. Mathematics Teaching in the Middle School, 14(2), 86-91.
Dyer, E. B. & Sherin, M. G. (2016). Instructional reasoning about interpretations of student thinking that supports responsive teaching in secondary mathematics. ZDM Mathematics Education, 48(1), 69-82.
Font, V., Planas, N. & Godino, J. D. (2010). A model for the study of mathematics teaching and learning processes. Infancia y Aprendizaje, 33(1), 89-105.
Giacomone, B., Godino, J. D. & Beltra?n-Pellicer, P. (2018). Developing the prospective mathematics teachers’ didactical suitability analysis competence. Educac?a?o e Pesquisa, 44, 1-21.
Gibson, D. C., Knezek, G., Redmond, P. & Bradley, E. (2014). Handbook of games and simulations in teacher education. Chesapeake, VA: Association for the Advancement of Computing in Education.
Godino, J. D. (2013). Indicators of didactical suitability for mathematics teaching and learning processes. Cuadernos de Investigación y Formación en Educación Matemática, (11), 111-132.
Godino, J. D., Batanero, C. & Burgos, M. (2023). Theory of didactical suitability: An enlarged view of the quality of mathematics instruction. Eurasia Journal of Mathematics, Science and Technology Education, 19(6), 1-20.
Godino, J. D., Batanero, C., & Font, V. (2003). Fundamentos de la enseñanza y el aprendizaje de las matemáticas para maestros. Granada, Universidad de Granada.
Godino, J. D., Batanero, C. & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM Mathematics Education, 39(1), 127-135.
Godino, J. D., Batanero, C. & Font, V. (2019). The Onto-semiotic Approach: implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 37-42.
Godino, J. D., Font, V., Wilhelmi, M. R. & De Castro, C. (2009). Aproximacio?n a la dimensio?n normativa en dida?ctica de las matema?ticas desde un enfoque ontosemio?tico. Ensen?anza de las Ciencias, 27(1), 59-76.
Godino, J. D., Giacomone, B., Batanero, C. & Font, V. (2017). Onto-Semiotic Approach to Mathematics Teacher's Knowledge and Competences. Bolema, 31(57), 90-113.
Guba, E. & Lincoln, Y. (2002). Paradigmas en competencia en la investigación cualitativa. In C. Denman & J. Haro (Ed.). Por los rincones. Antología de métodos cualitativos en la investigación social (pp. 113-145). Hermosillo Sonora: Editorial El colegio de Sonora.
Hatton, N., & Smith, D. (1995). Reflection in teacher education: Towards definition and implementation. Teaching and Teacher Education, 11(1), 33-49.
Hill, H. C., Rowan, B. & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371-406.
Huang, R., Takahashi, A. & Ponte, J. P. (2019). Theory and practice of lesson study in mathematics. Cham, Switzerland: Springer International Publishing.
Hummes, V., Breda, A. & Font, V. (2022). El desarrollo de la reflexión sobre la práctica en la formación de profesores de matemáticas: una mirada desde el Lesson Study y los Criterios de Idoneidad Didáctica. In J. Lugo-Armenta, L. Pino-Fan, M. Pochulu & W. Castro (Ed.). Enfoque ontosemiótico del conocimiento y la instrucción matemáticos: Investigaciones y desarrollos en América Latina (pp. 221-241). Osorno, Chile: Universidad de los Lagos.
Hummes, V., Breda, A., Font, V. & Seckel, M. J. (2023). Improvement of Reflection on Teaching Practice in a Training Course That Integrates the Lesson Study and Criteria of Didactical Suitability. Journal of Higher Education Theory and Practice, 23(14), 208-224.
Hummes, V., & Seckel, M. J. (2024). Advancing teacher reflective competence: Integrating lesson study and didactic suitability criteria in training. Frontiers in Education, 9, 1-9.
López, F. (2002). El análisis de contenido como método de investigación. En-clave Pedagógica, 4, 167-169.
Mason, J. (2002). Researching your own practice. The discipline of noticing. London: Routledge-Falmer.
Melo, C. B. S. & Bisognin, E. (2021). Modelagem Matemática como proposta de itinerário formativo no Novo Ensino Médio: uma possibilidade para o desenvolvimento de habilidades e competências. Revista Internacional de Pesquisa Em Educação Matemática, 11(1), 24-36.
Ortíz, F. J. R. (2023). Los paradigmas epistémicos en la investigación educativa. Revista Educativa Avanza, 1(1), 29-36.
Porta, L. & Silva, M. (2003). La investigación cualitativa: El Análisis de Contenido en la investigación educativa. Anuario digital de investigación educativa, 14: 1-18.
Proença, M. C., Campelo, C. S. A. & Oliveira, A. B. (2024). Prospective mathematics teachers’ reflections on their strategies for solving a simple combination problem. Revista Internacional de Pesquisa em Educação Matemática, 14(1), 1-13.
Speed, S. A., Bradley, E. & Garland, K. V. (2015). Teaching Adult Learner Characteristics and Facilitation Strategies Through Simulation-Based Practice. Journal of Educational Technology Systems, 44(2), 203-229.
Stahnke, R., Schueler, S. & Roesken-Winter, B. (2016). Teachers’ perception, interpretation, anddecision-making: a systematic review of empirical mathematics education research. ZDM Mathematics Education, 48, 1-27.
Downloads
Publicado
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.