Improving student knowledge about fraction magnitude: an initial study with students in Early Elementary Education
Keywords:
Early Elementary Education, Non-Symbolic and Symbolic Fractions, Measurement, 4A- Instructional ModelAbstract
The idea of magnitude is central to understanding fractional numbers. To investigate this relationship, we implemented a design research project in a school in the USA, to examine the potential of a measuring perspective and the mathematical notion of fraction-of-quantity to enhance second-grade students’ conceptual understanding of fraction magnitude. We used ideas from the history of mathematics and mathematics education within a cultural-historical framework to define what fractions are and to construct tasks. The research team consisted of a university professor, two doctoral students, one of whom was an administrator of the municipal board of education, eight elementary school teachers, and a mother. The research sessions involved 35 students, divided into two classes, meeting one hour per session, twice a week, for a total of 12 weeks. The students used Cuisenaire rods to develop the idea that a fraction is a multiplicative comparison between two measurable quantities. The results that we present indicate that the students appropriated the idea of the magnitude of fractions-of-quantity and that, based on mentally evoked images of the rods, were able to construct expressions involving fractional comparisons.
Downloads
References
Aleksandrov, A. D. (1963). A general view of mathematics (S. H. Gould & T. Bartha, Trans.). In A. D. Aleksandrov, A. N. Kolmogorov, & M. A. Lavrent’ev (Eds.), Mathematics: Its content, methods, and meaning (Vol. 1, pp. 1-64). Cambridge, MA: Massachusetts Institute of Technology.
Bailey, D. H., Hoard, M. K., Nugent, L., & Geary, D. C. (2012). Competence with fractions predicts gains in mathematics achievement. Journal of Experimental Child Psychology, 113(3), 447-455.
Barbosa, J. C., & Oliveira, A. M. P. d. (2015). Por que a pesquisa de desenvolvimento na Educação Matemática? Perspectivas da Educação MatemaÌtica, 8, 526-546.
Behr, M. J., Harel, G., Post, T., & Lesh, R. (1992). Rational number, ratio and proportion. In D. A. Grows (Ed.), Handbook on research on mathematics teaching and learning (pp. 296-333). New York: Macmillan.
Behr, M. J., Wachsmuth, I., Post, T. R., & Lesh, R. (1984). Order and equivalence of rational numbers: A clinical teaching experiment. Journal for Research in Mathematics Education, 5(5), 321-341.
Booth, J. L., & Newton, K. J. (2012). Fractions: Could they really be the gatekeeper’s doorman? Contemporary Educational Psychology, 37(4), 247-253.
Boyer, T. W., & Levine, S. C. (2012). Child proportional scaling: Is 1/3 = 2/6 = 3/9 = 4/12? Journal of Experimental Child Psychology, 111(3), 516-533.
Broetto, G. C., & Santos-Wagner, V. M. P. d. (2017). Números irracionais para professores (e futuros professores) de matemática: Uma abordagem direcionada à sala de aula. Vitória, ES: Edifes.
Caraça, B. d. J. (1951). Conceitos fundamentais da Matemática. Lisboa: Tipografia Matemática.
Carraher, D. W. (1993). Lines of Thought: A Ratio and Operator Model of Rational Number. Educational Studies in Mathematics, 25(4), 281-305.
Carraher, D. W. (1996). Learning about fractions. In L. P. Steffe, P. Nesher, G. A. Goldin, P. Cobb, & B. Greer (Eds.), Theories of mathematical learning (pp. 241-266). Mahwah, NJ: Lawrence Erlbaum Associates.
Clawson, C. C. (1994/2003). The mathematical traveler: Exploring the grand history of numbers. Cambrige, MA: Perseus.
De Morgan, A. (1836/2010). The connection of number and magnitude: An attempt to explain the Fifth Book of Euclid. Whitefish, Montana: Kessinger.
Dehaene, S. (2011). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.
Dilke, O. A. W. (1987). Mathematics and measurement. London: British Museum.
Duffy, S., Huttenlocher, J., & Levine, S. (2005). It is all relative: How young children encode extent. Journal of Cognition and Development, 6(1), 51-63.
Euler, L. (1765/1822). Elements of algebra (The Rev. John Hewlett, Trans. 3rd ed.). London: Longman, Hurst, Rees, Orme and Co.
Fazio, L. K., Bailey, D. H., Thompson, C. A., & Siegler, R. S. (2014). Relations of different types of numerical magnitude representations to each other and to mathematics achievement. Journal of Experimental Child Psychology, 123, 53-72.
Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314.
Jeong, Y., Levine, S. C., & Huttenlocher, J. (2007). The development of proportional reasoning: Effect of continuous versus discrete quantities. Journal of Cognition and Development, 8(2), 237-256.
Jordan, N. C., Hansen, N., Fuchs, L. S., Siegler, R. S., Gersten, R., & Micklos, D. (2013). Developmental predictors of fraction concepts and procedures. Journal of Experimental Child Psychology, 116(1), 45-58.
Jourdain, P. E. B. (1956). The nature of mathematics. In J. R. Newman (Ed.), The world of mathematics (Vol. 1, pp. 4-72). New York: Simon and Schuster.
Kieren, T. E. (1976). On the mathematical, cognitive and instructional foundations of rational number. In R. A. Lesh (Ed.), Number and measurement (pp. 101-144). Columbus, Ohio: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.
Kieren, T. E. (1988). Personal knowledge of rational numbers: Its intuitive and formal development. In J. Heibert & M. J. Behr (Eds.), Number concepts and operations in the middle grades (pp. 49-84). Reston, VA: Lawrence Erlbaum.
Lamon, S. J. (1999/2005). Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teachers (2nd ed.). New York: Lawrence Erlbaum Associates.
Lamon, S. J. (2001). Presenting and representing: From fractions to rational numbers. In A. Cuoco & F. Curcio (Eds.), The Roles of Representations in School Mathematics - 2001 Yearbook (pp. 146-168). Reston: National Council of Teachers of Mathematics.
Lamon, S. J. (2007). Rational numbers and proportional reasoning: Toward a theoretical framework for research. In J. F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A Project of the National Council of Teachers of Mathematics (pp. 629-667). Charlotte, NC: Information Age.
Lewis, M. R., Matthews, P. G., & Hubbard, E. M. (2015). Neurocognitive architectures and the nonsymbolic foundations of fractions understanding. In D. B. Berch, D. C. Geary, & K. M. Koepke (Eds.), Development of mathematical cognition: Neural substrates and genetic influences (pp. 141–160). San Diego, CA: Academic Press.
Lewis, M. R., Matthews, P. M., & Hubbard, E. M. (2015). Neurocognitive architectures and the nonsymbolic foundations of fractions understanding. In D. B. Berch, D. C. Geary, & K. M. Koepke (Eds.), Development of mathematical cognition: Neural substrates and genetic influences (pp. 141–160). San Diego, CA: Academic Press.
Mack, N. K. (1995). Confounding whole-number and fraction concepts when building on informal knowledge. Journal for Research in Mathematics Education, 26(5), 422-441.
Matthews, P. G., & Ellis, A. B. (2018). Natural alternatives to natural number: The case of ratio. Journal of Numerical Cognition, 4(1), 19-58.
Matthews, P. G., Lewis, M. R., & Hubbard, E. M. (2016). Individual differences in nonsymbolic ratio processing predict symbolic math performance. Psychological Science, 27(2), 191-202.
McCrink, K., & Wynn, K. (2007). Ratio abstraction by 6-month-old infants. Psychological Science, 18(8), 740-745.
New Jersey Department of Education. (2016). New Jersey student learning standards for mathematics. Trenton, NJ: New Jersey Department of Education.
Newark Public Schools. (2019). District Summary (2017-2018).
Ni, Y., & Zhou, Y.-D. (2005). Teaching and learning fraction and rational numbers: The origins and implications of whole number bias. Educational Psychologist, 40(1), 27-52.
Obersteiner, A., Dresler, T., Bieck, S. M., & Moeller, K. (2019). Understanding fractions: Integrating results from mathematics education, cognitive psychology, and neuroscience. In A. Norton & M. W. Alibali (Eds.), Constructing number: Merging perspectives from psychology and mathematics Education (pp. 135-162). Cham: Springer.
OECD. (2014). A profile of student performance in mathematics. In PISA 2012 results: What students know and can do—Student performance in mathematics, reading, and science (Vol. 1, Revised edition, February 2014, pp. 31-144). Paris: OECD Publishing.
Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542-551.
Ponte, J. P. d., Carvalho, R., Mata-Pereira, J., & Quaresma, M. (2016). Investigação baseada em design compreender e melhorar a práticas educativas. Quadrante, 25(2), 77-.
Powell, A. B. (2018a). Melhorando a epistemologia de números fracionários: Uma ontologia baseada na história e neurociência. Revista de Matemática, Ensino e Cultura, 13(29), 78-93.
Powell, A. B. (2018b). Reaching back to advance: Towards a 21st-century approach to fraction knowledge with the 4A-Instructional Model. Revista Perspectiva, 36(2), 399-420.
Powell, A. B., & Ali, K. V. (2018). Design research in mathematics education: Investigating a measuring approach to fraction sense. In J. F. Custódio, D. A. da Costa, C. R. Flores, & R. C. Grando (Eds.), Programa de PoÌs-Graduação em Educação CientiÌfica e TecnoloÌgica (PPGECT): Contribuições para pesquisa e ensino (pp. 221-242). São Paulo: Livraria da FiÌsica.
Rabardel, P., & Beguin, P. (2005). Instrument mediated activity: from subject development to anthropocentric design. Theoretical Issues in Ergonomics Science, 6(5), 429-461.
Resnick, I., Jordan, N. C., Hansen, N., Rajan, V., Rodrigues, J., Siegler, R. S., & Fuchs, L. S. (2016). Developmental growth trajectories in understanding of fraction magnitude from fourth through sixth grade. Developmental Psychology, 52(5), 746-757.
Ribeiro, E. S. (2010). Um estudo sobre o siÌmbolo, com base na semioÌtica de Peirce. Estudos SemioÌticos, 6(1), 46–53.
Roque, T. (2012). História da matemática: Uma visão crÃtica, desfazendo mitos e lendas. Rio de Janeiro: Zahar.
Scheffer, N. F., & Powell, A. B. (2019). Frações nos livros brasileiros do Programa Nacional do Livro Didático (PNLD). Revemop, 1(3), 476-503.
Siegler, R. S. (2016). Magnitude knowledge: The common core of numerical development. Developmental Science, 19(3), 341-361.
Siegler, R. S., Duncan, G. J., Davis-Kean, P. E., Duckworth, K., Claessens, A., Engel, M., . . . Chen, M. (2012). Early Predictors of High School Mathematics Achievement. Psychological Science, 23(7), 691-697.
Siegler, R. S., Thompson, C. A., & Schneider, M. (2011). An integrated theory of whole number and fractions development. Cognitive Psychology, 62(4), 273-296.
Sophian, C. (2000). Perceptions of proportionality in young children: Matching spatial ratios. Cognition, 75(2), 145-170.
State of New Jersey Department of Education. (2019). PARCC Spring State Summary Report, Mathematics 03 SY 2017-2018.
Struik, D. J. (1948/1967). A concise history of mathematics (3rd Revised ed.). New York: Dover.
Sztajn, P., Wilson, H., Edgington, C., Myers, M., & Dick, L. (2013). Using design experiments to conduct research on mathematics professional development. ALEXANDRIA Revista de Educação em Ciência e Tecnologia, 6(1), 9-34.
Tian, J., & Siegler, R. S. (2017). Why learning common fractions is uncommonly difficult: unique challenges faced by students with mathematical disabilities. Journal of Learning Disabilities, 50(6), 651.
Torbeyns, J., Schneider, M., Xin, Z., & Siegler, R. S. (2015). Bridging the gap: Fraction understanding is central to mathematics achievement in students from three different continents. Learning and Instruction, 37, 5-13.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.