Using GeoGebra as a tool for teaching the Padovan board and tiling

Autores

10.37001/ripem.v15i1.3995

Palavras-chave:

Didactic Engineering, GeoGebra, History of Mathematics, Padovan Sequence

Resumo

This study is part of ongoing doctoral research investigating the teaching of Padovan's combinatorial approach and the scarcity of works on this topic. The objective is to propose an approach to explore combinatorial identities with the help of GeoGebra. This approach aims to provide theoretical support to the teacher to understand and teach the combinatorial approach visually through a didactic situation supported by the construction of activities in the software. The methodology adopted is didactic engineering in its first two phases, given the nature of the ongoing research, and the teaching session was structured following the phases of the theory of didactic situations. This proposal is expected to contribute to the possible integration of GeoGebra into the teaching of the history of mathematics, considering the potential impact of a visual approach to the topic in teaching practice.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Aarts, J.; Follink, R. & Kruijtzer, G. (2001). Morphic numbers. Nieuw Archief voor Wiskunde, 5(2), 56-58.

Alves, F. R. V. & Catarino, P. M. M. C. (2022). A sequência de Padovan ou Cordonnier. Revista Brasileira de História da Matemática, 22(45), 21-43.

Artigue, M. & Perrin Glorian, M. J. (1991). Didactic engineering, research and development tool: some theoretical problems linked to this duality. For the Learning of Mathematics, 11(1), p. 13-18.

Artigue, M. (2014a). Didactic engineering in mathematics education. In: S. Lerman (Ed.). Encyclopedia of Mathematics Education. (pp. 159-162). New York: Springer.

Artigue, M. (2014b). Perspectives on design research: The case of didactical engineering. In: A. Bikner-Ahsbahs; C. Knipping & N. Presmeg. (Ed.). Approaches to qualitative research in mathematics education. (pp. 467-496). New York: Springer.

Artigue, M. (2020). Méthodologies de recherche en didactique des mathématiques: Où en sommes-nous? Educação Matemática Pesquisa, 22(3), 25-64.

Benjamin, A. T. & Quinn, J. J. (2003). Proofs the Realy Count: The art of Cominatorial Proof. Providence: American Mathematical Society.

Bergum, G. E.; Philippou, A. N. & Horadam, A. F. (1996). Applications of Fibonacci Numbers. Dordrecht: Kluwer Academic Publisher.

Brousseau, G. (2002). Theory of didactical situations in mathematics: didactique des Mathématiques, 1970–1990. New York: Kluwer Academic.

Burton, D. M. (2007). The History of Mathematics: an introduction. New York: McGraw-Hill Companiesa.

Chevallard, Y. (2002). Organiser l’étude. In: Actes de la Xème Ecole d’été de didactique des mathématiques (pp. 3-22, 41-56). Grenoble.

Ferreira, M. B. C. (2016). Uma organização didática em quadrilátero que aproxime o aluno de Licenciatura das demonstrações geométricas. 342f. Tese (Doutorado em Educação Matemática). Pontíficia Universidade Católica de São Paulo. São Paulo, SP.

Koshy, T. (2001). Fibonacci and Lucas numbers with applications. New York: Wiley-Interscience.

Marohnic, L.; Kovacic, B. & Radisic, B. (2013). O nultockama polinoma oblika xn-x-1. Osjecki matematicki list, 13, 1-13.

Spreafico, E. V. P. (2014). Novas identidades envolvendo os números de Fibonacci, Lucas e Jacobsthal via ladrilhamentos. 112f. Tese (Doutorado em Matemática). Universidade Estadual de Campinas. Campinas, SP.

Stewart, I. (1996). Tales of a neglected number. Mathematical Recreations - Scientific American, 274, 102-103.

Tedford, S. J. (2019). Combinatorial identities for the padovan numbers. The Fibonacci Quarterly, 4(57), 291-298.

Vieira, R. P. M. (2020). Engenharia Didática (ED): o caso da Generalização e Complexificação da Sequência de Padovan ou Cordonnier. 266f. Dissertação (Mestrado em Ensino de Ciências e Matemática). Instituto Federal do Ceará. Fortaleza, CE.

Vieira, R. P. M.; Alves, F. R. V. & Catarino, P. M. M. C. (2022). Combinatorial interpretation of numbers in the generalized padovan sequence and some of its extensions. Axioms, 11(11), 1-9.

Vieira, R. P. M.; Alves, F. R. V. & Catarino, P. M. M. C. (2023a). A note on Leonardo´s Combinatorial Approach. Journal of Instructional Mathematics, 4(2), 119-126.

Vieira, R. P. M.; Alves, F. R. V. & Catarino, P. M. M. C. (2023b). A construção de definições por meio do modelo combinatório de Padovan: uma investigação com a Engenharia Didática num curso de formação inicial de professores de Matemática. Acta Scientiae, 25(6), 366-395.

Publicado

20-02-2025

Edição

Seção

Artigos

Como Citar

Vieira, R. P. M., Alves, F. R. V., & Catarino, P. M. M. C. (2025). Using GeoGebra as a tool for teaching the Padovan board and tiling. Revista Internacional De Pesquisa Em Educação Matemática, 15(1), 1-14. https://doi.org/10.37001/ripem.v15i1.3995