A geometric workspace (GTE) for teaching and learning on parameterized surface topics
Keywords:
Mathematical Workspace, Revolution Surface, Records of Semiotic Representation, GeoGebra, Geometric ThinkingAbstract
This article aimed to analyze the contributions of a Geometric Workspace (ETG), involving the Theory of Semiotic Representation Registers (TRRS), for teaching and learning on parameterized surfaces. The research, of a qualitative nature, had the ETG as its theoretical reference, while its methodological reference was the TRSS. The research was structured into 4 modules: solids and surfaces (representations), plane parameterization, straight circular cylinder surface parameterization and spherical surface parameterization. The modules were tested with students from a Postgraduate program in Mathematics Teaching in the discipline of Geometry. The results highlighted contributions that favored the development of geometric knowledge for understanding and solving problems in parameterized surface topics, starting from the visualization to the construction of concepts and properties. The mobilization of different records helped in activating the genesis for the acquisition and the understanding of the contents and in the articulation of the plans by means of Figural Genesis, Instrumental or Discursive.
Downloads
References
Duval, R. (1988). Écarts sémantiques et cohérence mathématique: introduction aux problèmes de congruence. Annales de Didactique et de Sciences Cognitives, 1, 7-25.
Duval, R. (1995). Sémiosis et pensée humaine: Registres sémiotiques et apprentissages intellectuels. Peter Lang.
Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie. Annales de Didactique et de Sciences Cognitives, 10, 5–54.
Duval, R. (2011). Ver e ensinar a matemática de outra forma: entrar no modo matemático de pensar: os registros de representação semióticas. Proem.
Goldenberg, M. (2005). A arte de pesquisar: como fazer pesquisa qualitativa em Ciências Sociais. Record.
Gómez-Chacón, I. M. & Kuzniak, A. (2015). Spaces for geometric work: Figural, instrumental, and discursive geneses of reasoning in a technological environment. International Journal of Science and Mathematics Education, 13, 201–226.
Gómez-Chacón, I. M., Kuzniak, A. & Vivier, L. (2016). El rol del profesor desde la perspectiva de los espacios de trabajo matemático. Bolema, 30(54), 1-22.
Houdement, C. & Kuzniak, A. (1999). Un exemple de cadre conceptuel pour l’étude de l’enseignement de la géométrie en formation des maîtres. Educational Studies in Mathematics, 40, 283-312.
Houdement, C. & Kuzniak, A. (2006). Paradigmes géométriques et enseignement de la géométrie. Annales de Didactique et de Sciences Cognitives, 11, 175–193.
Kuzniak, A. (2011). L'espace de travail mathématique et ses genèses. Annales de Didactique et de Sciences Cognitives, 16, 9-24.
Kuzniak, A. (2018a). Thinking about the teaching of geometry through the lens of the theory of geometric working spaces. In T. P. Herbst et al. (Eds.), International perspectives on the teaching and learning of geometry in secondary schools (pp. 5-21). Springer.
Kuzniak, A. (2018b, dezembro). La théorie des espaces de travail mathématique: développement et perspectives. El Sexto Simposio de Trabajo Matemático (ETM6), 21-40.
Kuzniak, A., Montoya-Delgadillo, E. & Vivier, L. (2016, maio). El espacio de trabajo matemático y sus génesis. Revista Cuadernos de Investigación y Formación en Educación Matemática, 11(15), 237-251.
Kuzniak, A. & Nechache, A. (2018, dezembro). Une méthodologie pour analyser le travail personnel d’étudiants dans la théorie des espaces de travail mathématique. El Sexto Simposio de Trabajo Matemático (ETM6), 61-70.
Kuzniak, A. & Richard, P. R. (2014). Espacios de trabajo matemático: Puntos de vista y perspectivas. Revista Latinoamericana de Investigación en Matemática Educativa (Relime), 17(4-1), 5-39.
Kuzniak, A. & Vivier, L. (2019). An epistemological and philosophical perspective on the question of mathematical work in the mathematical working space theory. In U. T. Jankvist, M. Van Den Heuvel-Panhuizen & M. Veldhuis (Eds.), Proceedings of the eleventh congress of the European Society for Research in Mathematics Education (pp. 3070-3077). Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.
Rabardel, P. (1995). Les hommes et les technologies: une approche cognitive des instruments contemporains. Armand Colin.
Rivas, C. H. & Kuzniak, A. (2021, dezembro). Profundización en el trabajo geométrico de futuros profesores en entornos tecnológicos y de lápiz y papel. Bolema, 35(71), 1550-1572.
Salazar, J. V. F. & García-Cuéllar, D. J. (2020). Paradigmas geométricos en el trabajo matemático de docentes en formación continua. Plurais - Revista Multidisciplinar, 5(2), 58–77.
Simonetti, D. & Moretti, M. T. (2021, janeiro). Base Nacional Comum Curricular do Ensino Médio e Registros de Representação Semiótica: uma articulação possível? Revista Internacional de Pesquisa em Educação Matemática - RIPEM, 11(1), 99-117.
Souza, M. B., Fontes, B. C. & Borba, M. C. A. (2019). Coparticipação da Tecnologia Digital na Produção de Conhecimento Matemático. Sisyphus - Journal of Education, 7(1), 62-82.
Stake, R. E. (2011). Pesquisa qualitativa: estudando como as coisas funcionam. Penso.
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.